show that 7^p-6^p-1 for p > 3 prime is multiple of 43
$$\boxed{~~\textcolor[rgb]{0,150,0}{7} ^p - \textcolor[rgb]{0,0,150}{6}^p -1 \equiv 0 \mod 43 ~~, \quad \mathrm{if~~} p \mathrm{~~is~prime~and~~} p > 3.
} \\\\
\begin{array}{lrclcl}
\mathrm{Because~~ } &\textcolor[rgb]{0,150,0}{7}^6 &=& 117649 &\equiv& \textcolor[rgb]{1,0,0}{1} \mod 43\\
\mathrm{~~and~~ }\\
&\textcolor[rgb]{0,0,150}{6}^6 &=& 46656 &\equiv& \textcolor[rgb]{1,0,0}{1} \mod 43\\
\mathrm{~~and~~ }\\
&43 &=& \textcolor[rgb]{0,0,150}{6}\cdot \textcolor[rgb]{0,150,0}{7} + 1\\
\mathrm{~~and~~ }\\
&\textcolor[rgb]{0,0,150}{6} &=& \textcolor[rgb]{0,150,0}{7} - 1
\end{array}$$
If it can be this case generally is valid ?
$$\boxed{~~\textcolor[rgb]{0,150,0}{a} ^p - \textcolor[rgb]{0,0,150}{(a-1)}^p -1 \equiv 0 \mod [\textcolor[rgb]{0,150,0}{a} \textcolor[rgb]{0,0,150}{(a-1)} +1] ~~, \quad \mathrm{if~~} p \mathrm{~~is~prime~and~~} p > 3.
} \\\\
\begin{array}{lrclcl}
\mathrm{Because~~ } &\textcolor[rgb]{0,150,0}{a}^6 &&&\equiv& \textcolor[rgb]{1,0,0}{1} \mod [\textcolor[rgb]{0,150,0}{a} \textcolor[rgb]{0,0,150}{(a-1)} +1]\\
\mathrm{~~and~~ }\\
&\textcolor[rgb]{0,0,150}{(a-1)}^6 &&&\equiv& \textcolor[rgb]{1,0,0}{1} \mod [\textcolor[rgb]{0,150,0}{a} \textcolor[rgb]{0,0,150}{(a-1)} +1]\\
\end{array}$$
Examples:
$$\begin{array}{|c|c|l|l|c|}
\hline
\textcolor[rgb]{0,150,0}{a}
& \textcolor[rgb]{0,0,150}{a-1}
&\mathrm{~~multiple ~of~~ }&&\\
\hline
2 & 1 & 2*1+1 = 3 & 2^6 = 64 \equiv 1 \mod 3 & 2^p - 1^p - 1 \equiv 0 \mod 3 \\
& & & 1^6 = 1 \equiv 1 \mod 3 &\\
\hline
3 & 2 & 3*2+1 = 7 & 3^6 = 729 \equiv 1 \mod 7 & 3^p - 2^p - 1 \equiv 0 \mod 7 \\
& & & 2^6 = 64 \equiv 1 \mod 7 &\\
\hline
4 & 3 & 4*3+1 = 13 & 4^6 = 4096 \equiv 1 \mod 13 & 4^p - 3^p - 1 \equiv 0 \mod 13 \\
& & & 3^6 = 729 \equiv 1 \mod 13& \\
\hline
5 & 4 & 5*4+1 = 21 & 5^6 = 15625 \equiv 1 \mod 21 & 5^p - 4^p - 1 \equiv 0 \mod 21 \\
& & & 4^6 = 4096 \equiv 1 \mod 21& \\
\hline
6 & 5 & 6*5+1 = 31 & 6^6 = 46656 \equiv 1 \mod 31 & 6^p - 5^p - 1 \equiv 0 \mod 31 \\
& & & 5^6 = 15625 \equiv 1 \mod 31& \\
\hline
7 & 6 & 7*6+1 = 43 & 7^6 = 117649 \equiv 1 \mod 43 & \textcolor[rgb]{1,0,0}{ 7^p - 6^p - 1 \equiv 0 \mod 43 } \\
& & & 6^6 = 46656 \equiv 1 \mod 43 &\\
\hline
8 & 7 & 8*7+1 = 57 & 8^6 = 262144 \equiv 1 \mod 57 & 8^p - 7^p - 1 \equiv 0 \mod 57 \\
& & & 7^6 = 117649 \equiv 1 \mod 57 &\\
\hline
\cdots & \cdots & & & \cdots\\
\hline
\end{array}$$
![]()
All primes greater than 3 can be expressed in the form 6n+1 or 6n-1.
For example, 5 = 6 - 1,
7 = 6 + 1,
11 = 2.6 - 1,
13 = 2.6 + 1,
17 = 3.6 - 1
19 = 3.6 + 1,
23 = 4.6 - 1,
and so on.
There are a whole load of numbers for which 6n plus or minus 1 is not prime, but the important point is that 6n plus or minus one covers all of the primes greater than 3.
Consider then
$$N = 7^{\, 6n+1}-6^{\,6n+1}-1=(7\times7^{\,6n})-(6\times6^{\,6n})-1.$$
Now
$$7^{\,6}=117649=2736\times 43 + 1\equiv1(\bmod 43),$$
so
$$(7^{\,6})^{2}, (7^{\,6})^{3},\:\text{and in general}\:(7^{\,6})^{n}=7^{\,6n}\equiv 1(\bmod 43),$$
in which case
$$7\times7^{\,6n}\equiv7\times 1\equiv7(\bmod 43).$$
Similarly, since
$$6^{\,6}=46656=1085\times 43 + 1\equiv1(\bmod 43),$$
$$6\times6^{\,6n}\equiv 6(\bmod43).$$
It follows that
$$N\equiv7-6-1\equiv 0(\bmod 43),$$
that is , there is a remainder of zero if N is divided by 43.
To cover the 6n - 1 case, consider
$$42N =7\times 6(7^{\,6n-1}-6^{\,6n-1}-1)=(6\times7^{\,6n})-(7\times6^{\,6n})-42.$$
Proceeding as above,
$$42N\equiv6-7+1\equiv0(\bmod43),$$
implying that 42N is divisible by 43, and since 42 isn't, it follows that N is.
Thanks Bertie, I am always so pleased when you show yourself on our forum. ![]()
And, as expected, your answer looks amazing. :))
Another for me to study and hopefully absorb. ![]()
WOW
There are a whole load of numbers for which 6n plus or minus 1 is not prime, but the important point is that
6n plus or minus one covers all of the primes greater than 3.
I never knew that. Is that one of those things that plebs like me just have to accept, or is there an understandable proof floating around out there in the ether?
![]()
Here's a "proof," Melody........consider the number line......
..6n - 6 6n - 5 6n - 4 6n - 3 6n - 2 6n - 1 6n 6n+1 6n + 2 6n+3 6n+ 4 6n + 5 6n + 6..
Note that the terms 6n-6, 6n + 6, 6n - 4, 6n+ 4, 6n - 3, 6n + 3, 6n - 2, 6n + 2 and 6n cannot be primes
The only possible primes are 6n - 5, 6n -1 , 6n + 1 , 6n + 5.......but note that, 6n - 5 is really just the same thing as 6(n -1) + 1 and 6n + 5 is the same thing as 6(n + 1) - 1.....in other words, the only possible primes on the number line occur on either side of a integer which is divisible by 6, i.e., 6n - 1 or 6n + 1.......
And as Bertie points out, we have to make an exception for 2 and 3.....
![]()
Thanks Chris, that is really neat!
I think I understand what Bertie has done as well. I must be on a roll. ![]()
I think I should go looking for some introductory videos on modular arithemetic.
The basic stuff is not that hard but it is not cemented in my brain very well yet. ![]()
Anyway I will store this thread in our "reference material" sticky thread.
Thanks for the comments Melody.
Notice that the 6n plus or minus 1 thing is not unique, 2n or 4n plus or minus 1 share the same property.
I chose 6n because the 6 happened to fit in with the question.
show that 7^p-6^p-1 for p > 3 prime is multiple of 43
$$\boxed{~~\textcolor[rgb]{0,150,0}{7} ^p - \textcolor[rgb]{0,0,150}{6}^p -1 \equiv 0 \mod 43 ~~, \quad \mathrm{if~~} p \mathrm{~~is~prime~and~~} p > 3.
} \\\\
\begin{array}{lrclcl}
\mathrm{Because~~ } &\textcolor[rgb]{0,150,0}{7}^6 &=& 117649 &\equiv& \textcolor[rgb]{1,0,0}{1} \mod 43\\
\mathrm{~~and~~ }\\
&\textcolor[rgb]{0,0,150}{6}^6 &=& 46656 &\equiv& \textcolor[rgb]{1,0,0}{1} \mod 43\\
\mathrm{~~and~~ }\\
&43 &=& \textcolor[rgb]{0,0,150}{6}\cdot \textcolor[rgb]{0,150,0}{7} + 1\\
\mathrm{~~and~~ }\\
&\textcolor[rgb]{0,0,150}{6} &=& \textcolor[rgb]{0,150,0}{7} - 1
\end{array}$$
If it can be this case generally is valid ?
$$\boxed{~~\textcolor[rgb]{0,150,0}{a} ^p - \textcolor[rgb]{0,0,150}{(a-1)}^p -1 \equiv 0 \mod [\textcolor[rgb]{0,150,0}{a} \textcolor[rgb]{0,0,150}{(a-1)} +1] ~~, \quad \mathrm{if~~} p \mathrm{~~is~prime~and~~} p > 3.
} \\\\
\begin{array}{lrclcl}
\mathrm{Because~~ } &\textcolor[rgb]{0,150,0}{a}^6 &&&\equiv& \textcolor[rgb]{1,0,0}{1} \mod [\textcolor[rgb]{0,150,0}{a} \textcolor[rgb]{0,0,150}{(a-1)} +1]\\
\mathrm{~~and~~ }\\
&\textcolor[rgb]{0,0,150}{(a-1)}^6 &&&\equiv& \textcolor[rgb]{1,0,0}{1} \mod [\textcolor[rgb]{0,150,0}{a} \textcolor[rgb]{0,0,150}{(a-1)} +1]\\
\end{array}$$
Examples:
$$\begin{array}{|c|c|l|l|c|}
\hline
\textcolor[rgb]{0,150,0}{a}
& \textcolor[rgb]{0,0,150}{a-1}
&\mathrm{~~multiple ~of~~ }&&\\
\hline
2 & 1 & 2*1+1 = 3 & 2^6 = 64 \equiv 1 \mod 3 & 2^p - 1^p - 1 \equiv 0 \mod 3 \\
& & & 1^6 = 1 \equiv 1 \mod 3 &\\
\hline
3 & 2 & 3*2+1 = 7 & 3^6 = 729 \equiv 1 \mod 7 & 3^p - 2^p - 1 \equiv 0 \mod 7 \\
& & & 2^6 = 64 \equiv 1 \mod 7 &\\
\hline
4 & 3 & 4*3+1 = 13 & 4^6 = 4096 \equiv 1 \mod 13 & 4^p - 3^p - 1 \equiv 0 \mod 13 \\
& & & 3^6 = 729 \equiv 1 \mod 13& \\
\hline
5 & 4 & 5*4+1 = 21 & 5^6 = 15625 \equiv 1 \mod 21 & 5^p - 4^p - 1 \equiv 0 \mod 21 \\
& & & 4^6 = 4096 \equiv 1 \mod 21& \\
\hline
6 & 5 & 6*5+1 = 31 & 6^6 = 46656 \equiv 1 \mod 31 & 6^p - 5^p - 1 \equiv 0 \mod 31 \\
& & & 5^6 = 15625 \equiv 1 \mod 31& \\
\hline
7 & 6 & 7*6+1 = 43 & 7^6 = 117649 \equiv 1 \mod 43 & \textcolor[rgb]{1,0,0}{ 7^p - 6^p - 1 \equiv 0 \mod 43 } \\
& & & 6^6 = 46656 \equiv 1 \mod 43 &\\
\hline
8 & 7 & 8*7+1 = 57 & 8^6 = 262144 \equiv 1 \mod 57 & 8^p - 7^p - 1 \equiv 0 \mod 57 \\
& & & 7^6 = 117649 \equiv 1 \mod 57 &\\
\hline
\cdots & \cdots & & & \cdots\\
\hline
\end{array}$$
![]()