+0  
 
0
1999
2
avatar+279 

Janine made a cylindrical vase in which the sum of the lateral area and area of one base was about 3000 square centimeters. The vase had a height of 50 centimeters. Find the radius of the vase. Explain the method you would use to find the radius

 Jun 24, 2014

Best Answer 

 #1
avatar+129852 
+15

Actually...it's a pretty good question.....!!!

The surface area(s) are given by 2*pi*r*h (lateral SA) + pi*r^2 (SA of bottom)    .... So we have.....

2*pi*r*h  + pi*r^2 = 3000    And if h = 50, we have

2*pi*r*(50)  + pi*r^2 = 3000 

100*pi*r + pi*r^2 = 3000      Divide both sides by pi

100r + r^2  = 3000/pi            Subtract 3000/pi from both sides

r^2 + 100r - 3000/pi  = 0       Using the on-site calculator to solve, we have....

$${{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{r}}{\mathtt{\,-\,}}{\frac{{\mathtt{3\,000}}}{{\mathtt{\pi}}}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{r}} = {\mathtt{\,-\,}}{\frac{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{\pi}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{50}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{{\mathtt{\pi}}}}\\
{\mathtt{r}} = {\frac{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{\pi}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}}{\mathtt{\,-\,}}{\mathtt{50}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{{\mathtt{\pi}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{r}} = -{\mathtt{108.778\: \!649\: \!682\: \!953\: \!518\: \!7}}\\
{\mathtt{r}} = {\mathtt{8.778\: \!649\: \!682\: \!953\: \!518\: \!7}}\\
\end{array} \right\}$$

Reject the negative solution........so the radius is about 8.78 cm

 

 Jun 25, 2014
 #1
avatar+129852 
+15
Best Answer

Actually...it's a pretty good question.....!!!

The surface area(s) are given by 2*pi*r*h (lateral SA) + pi*r^2 (SA of bottom)    .... So we have.....

2*pi*r*h  + pi*r^2 = 3000    And if h = 50, we have

2*pi*r*(50)  + pi*r^2 = 3000 

100*pi*r + pi*r^2 = 3000      Divide both sides by pi

100r + r^2  = 3000/pi            Subtract 3000/pi from both sides

r^2 + 100r - 3000/pi  = 0       Using the on-site calculator to solve, we have....

$${{\mathtt{r}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{100}}{\mathtt{\,\times\,}}{\mathtt{r}}{\mathtt{\,-\,}}{\frac{{\mathtt{3\,000}}}{{\mathtt{\pi}}}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{r}} = {\mathtt{\,-\,}}{\frac{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{\pi}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{50}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{{\mathtt{\pi}}}}\\
{\mathtt{r}} = {\frac{\left({\mathtt{2}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}{\mathtt{\,\times\,}}{{\mathtt{\pi}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{\pi}}}}{\mathtt{\,-\,}}{\mathtt{50}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{{\mathtt{\pi}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{r}} = -{\mathtt{108.778\: \!649\: \!682\: \!953\: \!518\: \!7}}\\
{\mathtt{r}} = {\mathtt{8.778\: \!649\: \!682\: \!953\: \!518\: \!7}}\\
\end{array} \right\}$$

Reject the negative solution........so the radius is about 8.78 cm

 

CPhill Jun 25, 2014
 #2
avatar+279 
0

Thank You CPhill!

 Jun 25, 2014

1 Online Users