Processing math: 100%
 
+0  
 
0
1825
3
avatar+468 

 The question is right here in the picture below

 

 Oct 7, 2018
edited by shreyas1  Oct 7, 2018
 #1
avatar+998 
+3

Okay. Let's work this through step by step. If mBAC=70, and ABCPAQ, then APQ should also be 70.

 

If APQ=70,CPQ=110.

 

And since QPCABQ,AQB=110.

 

Also, since AQB=110,AQC=70.

 

Okay, now for the second part.

 

Since ABQQPC,PQC=BAQ.

 

Let both these angles be x.

 

This means that QAP=AQP, since BAC=70 and AQC=70, and both QAP  and AQP equal (70x).

 

Since APQ=70, both  QAP  and AQP are equal to 55.

 

Now the final step. Now that we have the angle measurements of AQB and AQP, we can solve for PQC.

AQB+AQP=165.

 PQC=180165=15

mPQC=15

laugh

 Oct 8, 2018
 #2
avatar+130477 
+2

Since triangle ABC  is similar to triangle PAQ

Then angle BAC  = angle APQ

But angle BAC  = 70

So angle APQ  = 70

And angle QPC  is supplemental to angle APQ

So angle QPC  = 110

 

And triangle ABQ  is simialr to triangle QCP

So  angle ABQ = angle QCP  

But angle ABQ  = angle ABC = angle QCP = angle ACB

 

So...triangle ABC  isosceles  with angles ABC, ACB  being equal

So...their measures  =  [ 180  - m angle BAC ] / 2  =   [180  - 70] / 2  = 110 / 2  = 55

And since m angle ACB  = m angle QCP...then m angle QCP  = 55

 

So...in triangle QPC......m angle PQC  = [ 180  - m angle QPC - m angle QCP ] =

 

180  - 110  - 55  = 180 - 165  =   15°  =  m angle PQC

 

 

cool cool cool

 Oct 8, 2018
edited by CPhill  Oct 8, 2018
 #3
avatar+468 
0

Thank you so much guys.

 Oct 8, 2018

1 Online Users