³√7x/³√5y^2
the ³√ above, signifies a cubed root
You need to use brackets Nataszaa because I am not sure what is under the root!
$$\frac{\sqrt[3]{7x}}{\sqrt[3]{5y^2}}\\\\ =\sqrt[3]{\frac{7x}{5y^2}}\\\\ =\left(\frac{7x}{5y^2\right)}^{1/3}$$