+0  
 
+1
110
2
avatar+701 

http://prntscr.com/l1s9ud

 Oct 3, 2018
 #1
avatar+3836 
+2

You can break the original value into \(\sqrt[3]{16}\sqrt[3]{x^5y^{13}}.\) We know that \(\sqrt[3]{16}=2\sqrt[3]{2}\), because of the power,  \(2^4.\) Thus, the answer is \(\boxed{2\sqrt[3]{2}\sqrt[3]{x^5y^{13}}}\).

 Oct 3, 2018
 #2
avatar+16321 
+2

....further   y^13 =  y^3 y^3 y^3 y^3 y     so you can take all of those y^3 's out

   and   x^5 = x^3 x^2       so you can take the x^3 out

 

2 x y^4 \(\sqrt[3]{2x^2 y}\)

.
 Oct 3, 2018
edited by ElectricPavlov  Oct 3, 2018

40 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.