1 + 3 + 5 + ..... + 199 can be expressed as the sum n^2 for n terms
The number of terms in this sum = [ 1 + 199] / 2 = 200 / 2 = 100
So
1 + 3 + 5 + ....+199 = n^2 = 100^2
And
2 + 4 + 6 + ....+ 200 can be expressed as the sum n(n +1) for n terms
The number of terms in this sum is the same as the first = 100
So .... 2 + 4 + 6 + ....+ 200 = n (n + 1) = 100(101)
So
[1 + 3 + 5 + ....+199 ] / [ 2 + 4 + 6 + ....+ 200] = [ 100^2] / [ 100 * 101] =
[100 * 100] / [ 100 * 101] = 1 / 101
CPhill: How do you get: [100 * 100] / [ 100 * 101] = 1 / 101?
It should be: 1/1.01. No??!!.
Sorry for the slight error....of course the answer should be 100/101 = 1/1.01 = 0.9900990099009901
Simplify (1+3+5+...+199)/(2+4+6+...+200).
\(\begin{array}{|rcll|} \hline s_n &=& \frac{(a_1+a_n)}{2} \cdot n \\ \hline \end{array}\)
\(\begin{array}{|rcll|} \hline && \frac{1+3+5+...+199}{2+4+6+...+200} \\\\ &=& \frac{\frac{(a_1+a_n)}{2} \cdot n }{\frac{(b_1+b_n)}{2} \cdot n} \\\\ &=& \frac{a_1+a_n}{b_1+b_n}\\\\ &=& \frac{1+199}{2+200}\\\\ &=& \frac{200}{202}\\\\ &=& \frac{100}{101}\\\\ &=& 0.99009900990\dots \\ \hline \end{array} \)