$${\frac{{\mathtt{\,-\,}}\left({\mathtt{7}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{85}}}}\right)}{\left({\mathtt{6}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{85}}}}\right)}}$$
Put the co-efficiencts into the surds by squaring them...
$${\frac{{\mathtt{\,-\,}}{\sqrt{{\mathtt{85}}{\mathtt{\,\times\,}}{\mathtt{49}}}}}{{\sqrt{{\mathtt{85}}{\mathtt{\,\times\,}}{\mathtt{36}}}}}}$$
Simplify...
$${\mathtt{\,-\,}}{\frac{{\sqrt{{\mathtt{4\,165}}}}}{{\sqrt{{\mathtt{3\,060}}}}}}$$
Which can be represented as:
$${\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\sqrt{{\mathtt{3\,060}}}}}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{4\,165}}}}\right)$$
So we can put the surds together, again by squaring it:
$${\mathtt{\,-\,}}{\sqrt{{\mathtt{4\,165}}{\mathtt{\,\times\,}}\left({\frac{{\mathtt{1}}}{{{\sqrt{{\mathtt{3\,060}}}}}^{\,{\mathtt{2}}}}}\right)}}$$
Simplify...
$${\mathtt{\,-\,}}{\sqrt{{\frac{{\mathtt{4\,165}}}{{\mathtt{3\,060}}}}}}$$
Now we can simplfy the fraction:
$${\mathtt{\,-\,}}{\sqrt{{\frac{{\mathtt{833}}}{{\mathtt{612}}}}}}$$
And further...
$${\mathtt{\,-\,}}{\sqrt{{\frac{{\mathtt{49}}}{{\mathtt{36}}}}}}$$
.