2(−1+√54)(√(5+√5)8)
(−1+√52)(√(5+√5)8)
(−1+√52)(√(5+√5)√8)
(−1+√52)(√(5+√5)2√2)
(−1+√5)(√(5+√5))4√2
−(√(5+√5)+√5∗√(5+√5)4√2
−(√(5+√5)+√(5(5+√5))4√2
−(√(5+√5)+√(25+5√5))4√2
−(√5+4√5+5+√54√5))4√2
−(√5+4√5+5+4√53)4√2*This may be wrong*
Let's see :)
2(−1+√54)(√5+√58)=(−1+√52)(√5+√5√8)=(−1+√52)(√5+√52√2)=(−1+√5)√(5+√5)4√2=√2(−1+√5)√(5+√5)8=(√10−√2)√(5+√5)8
I haven't checked it. :/
Simplify c**p with radicals
2⋅[ 14(√5−1) ]⋅√18⋅(5+√5)=24⋅(√5−1)⋅√18⋅(5+√5)=12⋅(√5−1)⋅√18⋅(5+√5)=12⋅(√5−1)⋅√5+√5√8=12⋅√8⋅(√5−1)⋅√5+√5=12⋅√8⋅√(√5−1)2⋅(5+√5)=12⋅√8⋅√(5−2√5+1)⋅(5+√5)=12⋅√8⋅√(6−2√5)⋅(5+√5)=12⋅√8⋅√30+6√5−10√5−2⋅5=12⋅√8⋅√30+6√5−10√5−10=12⋅√8⋅√20−4√5=12⋅√8⋅√4(5−√5)=√42⋅√8⋅√5−√5=22⋅√8⋅√5−√5=1√8⋅√5−√5=1√4⋅2⋅√5−√5=1√4⋅√2⋅√5−√5=12⋅√2⋅√5−√5=√2√2⋅12⋅√2⋅√5−√5=√22⋅2⋅√5−√5=√24⋅√5−√5=0.58778525229