Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1074
2
avatar

1/2 log base 3 of p + 2 log base 9 of p

 Feb 8, 2016

Best Answer 

 #1
avatar+26396 
+10

1/2 log base 3 of p + 2 log base 9 of p

 

p=p3log3(p)=9log9(p)|log3()log3(3log3(p))=log3(9log9(p))log3(p)log3(3)=log9(p)log3(9)|log3(3)=1 log3(p)=log9(p)log3(9)|log3(9)=log3(32)=2log3(3)=2log3(p)=log9(p)2log9(p)=log3(p)2 

 

12log3(p)+2log9(p)=12log3(p)+2log3(p)2=12log3(p)+log3(p)=32log3(p)

 

laugh

 Feb 8, 2016
edited by heureka  Feb 8, 2016
 #1
avatar+26396 
+10
Best Answer

1/2 log base 3 of p + 2 log base 9 of p

 

p=p3log3(p)=9log9(p)|log3()log3(3log3(p))=log3(9log9(p))log3(p)log3(3)=log9(p)log3(9)|log3(3)=1 log3(p)=log9(p)log3(9)|log3(9)=log3(32)=2log3(3)=2log3(p)=log9(p)2log9(p)=log3(p)2 

 

12log3(p)+2log9(p)=12log3(p)+2log3(p)2=12log3(p)+log3(p)=32log3(p)

 

laugh

heureka Feb 8, 2016
edited by heureka  Feb 8, 2016
 #2
avatar+130466 
+5

(1/2) log3 p   + (2) log9 p  =   [ use change of base  to re-write this]

 

(1/2)[log p] / [log3]   + 2[logp] / [log 9]  =

 

(1/2) [log p] /[ log 3]  + 2[log p] / [ log(3 * 3)]  =

 

(1/2) [ log  p] /  [log 3]   +  2 [log p] / [ log3 + log3] =

 

( [logp] [log3 + log3] + 4[log p] [ log 3] ) / ( 2 log (3)* [2 log3)] ) =

 

( [log p] [ log3 + log 3 + 4log 3 ] ) / ( 2 log 3 * [ 2 log 3 ])  =

 

([log p] [ 6 log 3] ) / [ (2log 3) (2log 3)]  =      ......( 6log 3 / 2 log 3   =  3 )

 

[ log p] [3] / [2 log 3] =

 

(3/2) [log p / log 3]  =

 

(3/2) log3 p

 

 

cool cool cool

 Feb 8, 2016
edited by CPhill  Feb 8, 2016

0 Online Users