1/2 log base 3 of p + 2 log base 9 of p
p=p3log3(p)=9log9(p)|log3()log3(3log3(p))=log3(9log9(p))log3(p)⋅log3(3)=log9(p)⋅log3(9)|log3(3)=1 log3(p)=log9(p)⋅log3(9)|log3(9)=log3(32)=2⋅log3(3)=2log3(p)=log9(p)⋅2log9(p)=log3(p)2
12⋅log3(p)+2⋅log9(p)=12⋅log3(p)+2⋅log3(p)2=12⋅log3(p)+log3(p)=32⋅log3(p)
1/2 log base 3 of p + 2 log base 9 of p
p=p3log3(p)=9log9(p)|log3()log3(3log3(p))=log3(9log9(p))log3(p)⋅log3(3)=log9(p)⋅log3(9)|log3(3)=1 log3(p)=log9(p)⋅log3(9)|log3(9)=log3(32)=2⋅log3(3)=2log3(p)=log9(p)⋅2log9(p)=log3(p)2
12⋅log3(p)+2⋅log9(p)=12⋅log3(p)+2⋅log3(p)2=12⋅log3(p)+log3(p)=32⋅log3(p)
(1/2) log3 p + (2) log9 p = [ use change of base to re-write this]
(1/2)[log p] / [log3] + 2[logp] / [log 9] =
(1/2) [log p] /[ log 3] + 2[log p] / [ log(3 * 3)] =
(1/2) [ log p] / [log 3] + 2 [log p] / [ log3 + log3] =
( [logp] [log3 + log3] + 4[log p] [ log 3] ) / ( 2 log (3)* [2 log3)] ) =
( [log p] [ log3 + log 3 + 4log 3 ] ) / ( 2 log 3 * [ 2 log 3 ]) =
([log p] [ 6 log 3] ) / [ (2log 3) (2log 3)] = ......( 6log 3 / 2 log 3 = 3 )
[ log p] [3] / [2 log 3] =
(3/2) [log p / log 3] =
(3/2) log3 p