We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# Simplify Expressions

0
356
5

Link to original question: https://web2.0calc.com/questions/simplify-each-expression_1

CPhill answered but he dropped the 2 on the -2cos4x.

Mar 30, 2018

### 5+0 Answers

#1
+1

Simplify: Sorry Adam, no LaTex !!
sin(x)^4 - sin(x)^2 cos(x)^2 - 2 cos(x)^4 =

Express sin(x)^2 in terms of cosine via the Pythagorean identity.
sin(x)^2 = 1 - cos(x)^2:
-2 cos(x)^4 - cos(x)^2 1 - cos(x)^2 + sin(x)^4 =

Expand -cos(x)^2 (1 - cos(x)^2).
-cos(x)^2 (1 - cos(x)^2) = cos(x)^4 - cos(x)^2:
-2 cos(x)^4 + cos(x)^4 - cos(x)^2 + sin(x)^4 =

Express sin(x)^4 in terms of cosine via the Pythagorean identity.
sin(x)^4 = (sin(x)^2)^2 = (1 - cos(x)^2)^2:
-2 cos(x)^4 - cos(x)^2 + cos(x)^4 + (1 - cos(x)^2)^2 =

Expand (1 - cos(x)^2)^2.
(1 - cos(x)^2)^2 = 1 - 2 cos(x)^2 + cos(x)^4:
-2 cos(x)^4 - cos(x)^2 + cos(x)^4 + 1 - 2 cos(x)^2 + cos(x)^4 =

Evaluate -2 cos(x)^4 - cos(x)^2 + cos(x)^4 + 1 - 2 cos(x)^2 + cos(x)^4.
-2 cos(x)^4 - cos(x)^2 + cos(x)^4 + 1 - 2 cos(x)^2 + cos(x)^4

= 1 - 3cos(x)^2

Mar 30, 2018
#4
0

Thanks Guest!

AdamTaurus  Mar 30, 2018
#2
+1

Sorry for the earlier error!!!

This becomes a little easier if we factor up front

sin^4x -sin^2xcos^2x -2cos^4x      factor as

(sin^2x  - 2cos^2x) (sin^2x + cos^2x)

(sin^2x - 2cos^2x)  (1)

sin^2x  - 2cos^2x

sin^2x  - 2 (1 - sin^2x)

3sin^2x -  2   or

3(1 - cos^2x) - 2

3 - 3cos^2x - 2

1 - 3cos^2x   Mar 30, 2018
#3
+1

Thanks CPhill!

AdamTaurus  Mar 30, 2018
#5
0

OK, Adam  !!!   CPhill  Mar 30, 2018