+0  
 
0
820
3
avatar+1307 

Simplify $ \root 3 \of {x \root 3 \of {x \root 3 \of {x \sqrt{x}}}}. $ Express your answer in simplest radical form in terms of $x$.

AWESOMEEE  Jun 30, 2015

Best Answer 

 #2
avatar+19992 
+5

Simplify $ \root 3 \of {x \root 3 \of {x \root 3 \of {x \sqrt{x}}}}. $ Express your answer in simplest radical form in terms of $x$.

 

$$\boxed{~~ \text{Formula: } \sqrt[n]{a\cdot b}
= \sqrt[n]{a}\cdot \sqrt[n]{b} ~~}$$

 

$$\root 3 \of {x \root 3 \of {x \root 3 \of {x \sqrt{x}}}} \\\\
= \root 3 \of {x} \cdot \root 3 \of {\root 3 \of {x \root 3 \of {x \sqrt{x}}}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x \root 3 \of {x \sqrt{x}}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x} \cdot
\root 9 \of {\root 3 \of {x \sqrt{x}}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x} \cdot
\root 27 \of {x \sqrt{x}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x} \cdot
\root 27 \of {x} \cdot
\root 27 \of {\sqrt{x}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x} \cdot
\root 27 \of {x} \cdot
\root 54 \of {x}\\\\
=
x^{\frac13}
\cdot x^{\frac19}
\cdot x^{\frac1{27}}
\cdot x^{\frac1{54}}\\\\
=
x^{\frac13+\frac19+\frac1{27}+ \frac1{54}}\\\\
=
x^{\frac13 \cdot \frac{18}{18}
+\frac19 \cdot \frac{6}{6}
+\frac1{27} \cdot \frac{2}{2} + \frac1{54}}\\\\
=x^{\frac{18+6+2+1}{54} } \\\\$$

 

$$\\=x^{\frac{27}{54}}\\\\
=x^{\frac{1}{2} } \\\\
\mathbf{= \sqrt{x}}$$

 

heureka  Jul 1, 2015
 #1
avatar+88775 
+5

√x

 

Basically, we're taking the cube root of x^(3/2) = x^(1/2) and multiplying this by x  = (x)^(3/2)....then taking the cube root of that, etc.........the last operation results in  (x)^(3/2)^(1/3)  = x^(1/2)  =

√x

 

 

CPhill  Jun 30, 2015
 #2
avatar+19992 
+5
Best Answer

Simplify $ \root 3 \of {x \root 3 \of {x \root 3 \of {x \sqrt{x}}}}. $ Express your answer in simplest radical form in terms of $x$.

 

$$\boxed{~~ \text{Formula: } \sqrt[n]{a\cdot b}
= \sqrt[n]{a}\cdot \sqrt[n]{b} ~~}$$

 

$$\root 3 \of {x \root 3 \of {x \root 3 \of {x \sqrt{x}}}} \\\\
= \root 3 \of {x} \cdot \root 3 \of {\root 3 \of {x \root 3 \of {x \sqrt{x}}}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x \root 3 \of {x \sqrt{x}}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x} \cdot
\root 9 \of {\root 3 \of {x \sqrt{x}}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x} \cdot
\root 27 \of {x \sqrt{x}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x} \cdot
\root 27 \of {x} \cdot
\root 27 \of {\sqrt{x}}\\\\
=
\root 3 \of {x} \cdot
\root 9 \of {x} \cdot
\root 27 \of {x} \cdot
\root 54 \of {x}\\\\
=
x^{\frac13}
\cdot x^{\frac19}
\cdot x^{\frac1{27}}
\cdot x^{\frac1{54}}\\\\
=
x^{\frac13+\frac19+\frac1{27}+ \frac1{54}}\\\\
=
x^{\frac13 \cdot \frac{18}{18}
+\frac19 \cdot \frac{6}{6}
+\frac1{27} \cdot \frac{2}{2} + \frac1{54}}\\\\
=x^{\frac{18+6+2+1}{54} } \\\\$$

 

$$\\=x^{\frac{27}{54}}\\\\
=x^{\frac{1}{2} } \\\\
\mathbf{= \sqrt{x}}$$

 

heureka  Jul 1, 2015
 #3
avatar+93289 
0

You made that look REALLY hard Heureka   LOL   :))

Melody  Jul 2, 2015

11 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.