+0

# Pls Help Simplifying Expressions!

0
56
5

Simplify the expression \(√7!\), where \(n!\) stands for \(n*(n-1)*(n-2).... 2*1\).

Apr 18, 2023
edited by Keihaku  Apr 18, 2023

#1
+1

7! = 5040 = 2^4 * 3^2 * 5 * 7

Sqrt{2^4 * 3^2 * 5 * 7]= 2^2 * 3 * sqrt(5 *7) = 12 sqrt(35) - which is what you want.

Apr 18, 2023
#2
0

Thank you, guest, but i'm sorry that's incorrect!

Keihaku  Apr 18, 2023
#3
0

sqrt(7!) simplifies to 4*sqrt(210).

Apr 18, 2023
#4
0

Sorry, thats incorrect too! I'm not sure if its the same guest, but thanks for trying again!

Keihaku  Apr 18, 2023
#5
0

To calculate the square root of 7! where n! stands for n*(n-1)(n-2)...2*1, we can use the factorial property:

7! = 7654321

sqrt(7!) = sqrt(7654321) = sqrt(7) * sqrt(6) * sqrt(5) * sqrt(4) * sqrt(3) * sqrt(2) * sqrt(1)

sqrt(7) * sqrt(6) * sqrt(5) * sqrt(4) * sqrt(3) * sqrt(2) * sqrt(1) = 7^(1/2) * 6^(1/2) * 5^(1/2) * 4^(1/2) * 3^(1/2) * 2^(1/2) * 1

Using this information to jumpstart your question, try simplifying the last expression.

Apr 18, 2023