+0  
 
0
287
1
avatar

Simplify the following expression: cos(acos(2/x)-asec(x))

Guest Dec 5, 2014

Best Answer 

 #1
avatar+92806 
+5

 

$$\\cos(acos(2/x)-asec(x))\\\\
=cos(acos(2/x)-acos(1/x)) \\\\
Let\;\;\theta_1=acos(2/x)\qquad and \qquad \theta_2=acos(1/x)\\\\
=cos(\theta_1-\theta_2) \\\\
= cos(\theta_1)cos(\theta_2)+sin(\theta_1)sin(\theta_2)\\\\$$

 

etc

 

Now you have the cos values

To get the sine values I would draw a right angled tiangle for each of them that is theta1 and theta 2

I'd mark the adj and the hypotenuse according to the given ratios and then I'd find the opposite sides using phythagoras' theorem.

You can read the sin values off the triangles.

 

If you understand all this then you can finish it yourself.

Think about it if you need more help post again and I can explain better/more.    

Melody  Dec 5, 2014
 #1
avatar+92806 
+5
Best Answer

 

$$\\cos(acos(2/x)-asec(x))\\\\
=cos(acos(2/x)-acos(1/x)) \\\\
Let\;\;\theta_1=acos(2/x)\qquad and \qquad \theta_2=acos(1/x)\\\\
=cos(\theta_1-\theta_2) \\\\
= cos(\theta_1)cos(\theta_2)+sin(\theta_1)sin(\theta_2)\\\\$$

 

etc

 

Now you have the cos values

To get the sine values I would draw a right angled tiangle for each of them that is theta1 and theta 2

I'd mark the adj and the hypotenuse according to the given ratios and then I'd find the opposite sides using phythagoras' theorem.

You can read the sin values off the triangles.

 

If you understand all this then you can finish it yourself.

Think about it if you need more help post again and I can explain better/more.    

Melody  Dec 5, 2014

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.