+0  
 
0
190
1
avatar

Simplify the following expression: cos(acos(2/x)-asec(x))

Guest Dec 5, 2014

Best Answer 

 #1
avatar+91469 
+5

 

$$\\cos(acos(2/x)-asec(x))\\\\
=cos(acos(2/x)-acos(1/x)) \\\\
Let\;\;\theta_1=acos(2/x)\qquad and \qquad \theta_2=acos(1/x)\\\\
=cos(\theta_1-\theta_2) \\\\
= cos(\theta_1)cos(\theta_2)+sin(\theta_1)sin(\theta_2)\\\\$$

 

etc

 

Now you have the cos values

To get the sine values I would draw a right angled tiangle for each of them that is theta1 and theta 2

I'd mark the adj and the hypotenuse according to the given ratios and then I'd find the opposite sides using phythagoras' theorem.

You can read the sin values off the triangles.

 

If you understand all this then you can finish it yourself.

Think about it if you need more help post again and I can explain better/more.    

Melody  Dec 5, 2014
Sort: 

1+0 Answers

 #1
avatar+91469 
+5
Best Answer

 

$$\\cos(acos(2/x)-asec(x))\\\\
=cos(acos(2/x)-acos(1/x)) \\\\
Let\;\;\theta_1=acos(2/x)\qquad and \qquad \theta_2=acos(1/x)\\\\
=cos(\theta_1-\theta_2) \\\\
= cos(\theta_1)cos(\theta_2)+sin(\theta_1)sin(\theta_2)\\\\$$

 

etc

 

Now you have the cos values

To get the sine values I would draw a right angled tiangle for each of them that is theta1 and theta 2

I'd mark the adj and the hypotenuse according to the given ratios and then I'd find the opposite sides using phythagoras' theorem.

You can read the sin values off the triangles.

 

If you understand all this then you can finish it yourself.

Think about it if you need more help post again and I can explain better/more.    

Melody  Dec 5, 2014

8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details