Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
4183
2
avatar+46 

Simplify the radical expression : (-1-√2)/(1+√2), (√8)/(√2+3) , (√3)/(√27-√3) , (√2-√8)/2(√2-1) , (3√3-2√2)/(√3-√2), (√2-√8)/(2√2-1), (1-√2)/(1+√2), (3√3-2√2)/(√3-√2)

 Nov 20, 2014

Best Answer 

 #2
avatar+26397 
+5

Simplify the radical expression :

1.)  (-1-√2)/(1+√2)

(12)(1+2)=(1+2)(1+2)=1

2.)  (√8)/(√2+3)

82+3=222+32323=27(232)

3.)  (√3)/(√27-√3)

3273=3333=323=12

4.)  (√2-√8)/2(√2-1)

282(21)=2222(21)=22(21)2+12+1=22(2+1)=(1+22)

5.)  (3√3-2√2)/(√3-√2)

3322323+23+2=(3322)(3+2)=9+64=5+6

6.)  (√2-√8)/(2√2-1)

\samll 28221=222221=222122+122+1=27(22+1)=17(4+2) 

7.)  (1-√2)/(1+√2)

 121+21212=(12)(12)=(122+2)=(322)=223 

again 5.) (3√3-2√2)/(√3-√2)

 Nov 20, 2014
 #1
avatar+23254 
+5

To simplify these, multiply both the numerator and denominator of the fraction by the conjugate of the denominator.

The conjugate of   x + √y  is x - √y.

The conjugate of   x - √y  is x + √y.

The conjugate of  x + a√y  is x - a√y

As an example:

To simplify  (2 + √3) / (4 - √5)  multiply both the numerator and denominator by 4 + √5:

     (2 + √3) / (4 - √5) x (4 + √5) / (4 + √5)

Numerator:  (2 + √3)(4 + √5)  =  8 + 4√3 +2√5 + √15

Denominator:  (4 - √5)(4 + √5)  =  16 - 4√5 + 4√5 - √25  =  16 - 5  = 11

Answer:  ( 8 + 4√3 +2√5 + √15 ) / 11

Any questions about this example?

 Nov 20, 2014
 #2
avatar+26397 
+5
Best Answer

Simplify the radical expression :

1.)  (-1-√2)/(1+√2)

(12)(1+2)=(1+2)(1+2)=1

2.)  (√8)/(√2+3)

82+3=222+32323=27(232)

3.)  (√3)/(√27-√3)

3273=3333=323=12

4.)  (√2-√8)/2(√2-1)

282(21)=2222(21)=22(21)2+12+1=22(2+1)=(1+22)

5.)  (3√3-2√2)/(√3-√2)

3322323+23+2=(3322)(3+2)=9+64=5+6

6.)  (√2-√8)/(2√2-1)

\samll 28221=222221=222122+122+1=27(22+1)=17(4+2) 

7.)  (1-√2)/(1+√2)

 121+21212=(12)(12)=(122+2)=(322)=223 

again 5.) (3√3-2√2)/(√3-√2)

heureka Nov 20, 2014

1 Online Users