+0

# Simplify

-1
10
1
+1066

Simplify the expression
\frac{1}{\sqrt{36}} - \sqrt{27} - \frac{1}{\sqrt{27}} - \sqrt{18} + \frac{1}{\sqrt{18}} - \sqrt{9}

Feb 18, 2024

#1
+1622
+1

$$\frac{1}{\sqrt{36}} - \sqrt{27} - \frac{1}{\sqrt{27}} - \sqrt{18} + \frac{1}{\sqrt{18}} - \sqrt{9}$$

Begin by simplifying the radicals: $${1\over6}-3\sqrt{3}-{1\over{3\sqrt{3}}}-3\sqrt{2}+{1\over{3\sqrt{2}}}-3$$

Then, rationalize the denominators: for example, $${1\over\sqrt{x}}={1\over\sqrt{x}}*{\sqrt{x}\over\sqrt{x}}={\sqrt{x}\over{x}}$$:

$${1\over{6}}-3\sqrt{3}-{3\sqrt{3}\over27}-3\sqrt{2}+{3\sqrt{2}\over18}-3$$

Simplify the denominators, then combine like terms: $${1\over{6}}-3\sqrt{3}-{\sqrt{3}\over9}-3\sqrt{2}+{\sqrt{2}\over6}-3$$

Put everyone under the same common denominator, 18: $${3\over{18}}-{54\sqrt{3}\over18}-{2\sqrt{3}\over18}-{54\sqrt{2}\over18}+{3\sqrt{2}\over18}-{54\over18}$$

Combine like terms: $${-51-56\sqrt{3}-51\sqrt{2}\over18}$$, I trust that you can split up the fraction if the answer specifies so.

Feb 19, 2024