+0  
 
0
518
1
avatar

What is the simplified value of \(\frac{10! + 11! + 12!}{10! + 11!}\)?

 Jan 31, 2021

Best Answer 

 #1
avatar+9479 
+2

\(\dfrac{10!+11!+12!}{10!+11!}\\~\\ \ =\ \dfrac{10!\ +\ 11\cdot10!\ +\ 12\cdot11\cdot10!}{10!\ +\ 11\cdot10!}\\~\\ \ =\ \dfrac{10!(\ 1\ +\ 11\ +\ 12\cdot11\ )}{10!(\ 1\ +\ 11\ )}\\~\\ \ =\ \dfrac{1\ +\ 11\ +\ 12\cdot11}{1\ +\ 11}\\~\\ \ =\ \dfrac{1\ +\ 11\ +\ 132}{1\ +\ 11}\\~\\ \ =\ \dfrac{144}{12}\\~\\ \ =\ 12\)

 

_

.
 Jan 31, 2021
 #1
avatar+9479 
+2
Best Answer

\(\dfrac{10!+11!+12!}{10!+11!}\\~\\ \ =\ \dfrac{10!\ +\ 11\cdot10!\ +\ 12\cdot11\cdot10!}{10!\ +\ 11\cdot10!}\\~\\ \ =\ \dfrac{10!(\ 1\ +\ 11\ +\ 12\cdot11\ )}{10!(\ 1\ +\ 11\ )}\\~\\ \ =\ \dfrac{1\ +\ 11\ +\ 12\cdot11}{1\ +\ 11}\\~\\ \ =\ \dfrac{1\ +\ 11\ +\ 132}{1\ +\ 11}\\~\\ \ =\ \dfrac{144}{12}\\~\\ \ =\ 12\)

 

_

hectictar Jan 31, 2021

4 Online Users

avatar
avatar