SImplify $$\dfrac{7x^{2014}}{4x^{2013}}\cdot{\dfrac{2x^{2012}}{2x^{2007}}}\cdot\dfrac{27x^{2006}}{x^{2002}}\cdot\dfrac{6x^{2008}}{8x^{2010}}.$$
I will start you off.
\(\dfrac{7x^{2014}}{4x^{2013}}\cdot{\dfrac{2x^{2012}}{2x^{2007}}}\cdot\dfrac{27x^{2006}}{x^{2002}}\cdot\dfrac{6x^{2008}}{8x^{2010}}\)
\(=\dfrac{7x^{2014-2013}}{4^{2013}}\cdot{\dfrac{2x^{2012}}{2x^{2007}}}\cdot\dfrac{27x^{2006}}{x^{2002}}\cdot\dfrac{6x^{2008}}{8x^{2010}}.\\ ~\\=\dfrac{7x^{1}}{2^{2*2013}}\cdot{\dfrac{2x^{2012}}{2x^{2007}}}\cdot\dfrac{27x^{2006}}{x^{2002}}\cdot\dfrac{6x^{2008}}{8x^{2010}}\)
Now it is your turn.
Here's another way
Multiply all the constants on top and bottom = 7 * 2 * 27 * 6 42 *27 21 * 27
__________ = ______ = _______ =
4 * 2 * 1 * 8 4 * 8 2 * 8
567 / 16
Now look at the rest
The first fraction gives us x^(2014 -2013) = x^1
The second fraction gives us x^(2012 - 2007) = x^5
The third fraction gives us x^(2006 - 2002) = x^4
And the last one gives us x^(2008 -2010) =x^(-2)
So
x * x^5 * x^4 * x^(-2) = x^( 1 + 5 + 4 - 2) = x^8
So...our answer is just (567 / 16) x^8