+0

# Simplifying expression help please!!!, these are so hard

0
117
2

Simplifying expression help please!!!, these are so hard

Guest Oct 31, 2017
Sort:

#1
+6312
+1

e.   To make factoring easier, rearrange the 25 - 20x + 4x2 .

$$\frac{6x^2-11x-10}{6x^2-5x-6}\cdot\frac{6-4x}{4x^2-20x+25}$$

Now we need to factor all the numerators and denominators. Start by splitting their middle terms.

=   $$\frac{6x^2+4x-15x-10}{6x^2-9x+4x-6}\cdot\frac{6-4x}{4x^2-10x-10x+25}$$

Now factor by grouping.

=   $$\frac{2x(3x+2)-5(3x+2)}{3x(2x-3)+2(2x-3)}\cdot\frac{6-4x}{2x(2x-5)-5(2x-5)}$$

=   $$\frac{(3x+2)(2x-5)}{(2x-3)(3x+2)}\cdot\frac{-2(2x-3)}{(2x-5)(2x-5)}$$

Multiply the fractions together.

=   $$\frac{(3x+2)(2x-5)(-2)(2x-3)}{(2x-3)(3x+2)(2x-5)(2x-5)}$$

Cancel the common terms.

=   $$\frac{{\color{red}(3x+2)}{\color{red}(2x-5)}(-2){\color{red}(2x-3)}}{{\color{red}(2x-3)(3x+2)(2x-5)}(2x-5)}$$

=   $$\frac{(-2)}{(2x-5)}$$

=   - $$\frac{2}{2x-5}$$

And  x  ≠  3/2  or  -2/3   since these cause a zero in the denominator of the original expression.

hectictar  Oct 31, 2017
#2
+6928
+1

f)

$$\dfrac{3x^3-3a^2x}{x^2-2ax+a^2}\cdot\dfrac{a-x}{a^3x+a^2x^2}\\ =\dfrac{3x(x-a)(x+a)}{(x-a)(x-a)}\cdot\left(-\dfrac{x-a}{a^2x(a+x)}\right)\\ =\dfrac{-3x(x-a)^2(x+a)}{a^2x(x-a)^2(x+a)}\\ =-\dfrac{3}{a^2}$$

MaxWong  Nov 1, 2017

### 25 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details