+0  
 
0
52
1
avatar

\({b^2 + 2b -24 \over 2b^2 - 72}\) and show each step :)

Guest Mar 15, 2018

Best Answer 

 #1
avatar
0

Simplify the following:

(b^2 + 2 b - 24)/(2 b^2 - 72)

 

The factors of -24 that sum to 2 are 6 and -4. So, b^2 + 2 b - 24 = (b + 6) (b - 4):

((b + 6) (b - 4))/(2 b^2 - 72)

 

Factor 2 out of 2 b^2 - 72:

((b + 6) (b - 4))/(2 (b^2 - 36))

 

b^2 - 36 = b^2 - 6^2:

((b + 6) (b - 4))/(2 (b^2 - 6^2))

 

Factor the difference of two squares. b^2 - 6^2 = (b - 6) (b + 6):

((b + 6) (b - 4))/(2 (b - 6) (b + 6))

 

((b + 6) (b - 4))/(2 (b - 6) (b + 6)) = (b + 6)/(b + 6)×(b - 4)/(2 (b - 6)) = (b - 4)/(2 (b - 6)):

 

(b - 4) / (2(b - 6))

Guest Mar 15, 2018
Sort: 

1+0 Answers

 #1
avatar
0
Best Answer

Simplify the following:

(b^2 + 2 b - 24)/(2 b^2 - 72)

 

The factors of -24 that sum to 2 are 6 and -4. So, b^2 + 2 b - 24 = (b + 6) (b - 4):

((b + 6) (b - 4))/(2 b^2 - 72)

 

Factor 2 out of 2 b^2 - 72:

((b + 6) (b - 4))/(2 (b^2 - 36))

 

b^2 - 36 = b^2 - 6^2:

((b + 6) (b - 4))/(2 (b^2 - 6^2))

 

Factor the difference of two squares. b^2 - 6^2 = (b - 6) (b + 6):

((b + 6) (b - 4))/(2 (b - 6) (b + 6))

 

((b + 6) (b - 4))/(2 (b - 6) (b + 6)) = (b + 6)/(b + 6)×(b - 4)/(2 (b - 6)) = (b - 4)/(2 (b - 6)):

 

(b - 4) / (2(b - 6))

Guest Mar 15, 2018

40 Online Users

avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details