We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

+0

# simplifying this rational expression?

0
171
1

$${b^2 + 2b -24 \over 2b^2 - 72}$$ and show each step :)

Mar 15, 2018

### Best Answer

#1
0

Simplify the following:

(b^2 + 2 b - 24)/(2 b^2 - 72)

The factors of -24 that sum to 2 are 6 and -4. So, b^2 + 2 b - 24 = (b + 6) (b - 4):

((b + 6) (b - 4))/(2 b^2 - 72)

Factor 2 out of 2 b^2 - 72:

((b + 6) (b - 4))/(2 (b^2 - 36))

b^2 - 36 = b^2 - 6^2:

((b + 6) (b - 4))/(2 (b^2 - 6^2))

Factor the difference of two squares. b^2 - 6^2 = (b - 6) (b + 6):

((b + 6) (b - 4))/(2 (b - 6) (b + 6))

((b + 6) (b - 4))/(2 (b - 6) (b + 6)) = (b + 6)/(b + 6)×(b - 4)/(2 (b - 6)) = (b - 4)/(2 (b - 6)):

(b - 4) / (2(b - 6))

Mar 15, 2018

### 1+0 Answers

#1
0
Best Answer

Simplify the following:

(b^2 + 2 b - 24)/(2 b^2 - 72)

The factors of -24 that sum to 2 are 6 and -4. So, b^2 + 2 b - 24 = (b + 6) (b - 4):

((b + 6) (b - 4))/(2 b^2 - 72)

Factor 2 out of 2 b^2 - 72:

((b + 6) (b - 4))/(2 (b^2 - 36))

b^2 - 36 = b^2 - 6^2:

((b + 6) (b - 4))/(2 (b^2 - 6^2))

Factor the difference of two squares. b^2 - 6^2 = (b - 6) (b + 6):

((b + 6) (b - 4))/(2 (b - 6) (b + 6))

((b + 6) (b - 4))/(2 (b - 6) (b + 6)) = (b + 6)/(b + 6)×(b - 4)/(2 (b - 6)) = (b - 4)/(2 (b - 6)):

(b - 4) / (2(b - 6))

Guest Mar 15, 2018