+0  
 
+2
542
1
avatar+7607 

sin^2(x) + cos(x) + 1 = 0 In the interval [0, 2π)

 

\(sin^2(x)+cos(x)+1=0\)

 

\(sin^2(x)=1-cos^2(x)\)

 

\(1-cos^2(x)+cos(x)+1=0\)

 

\(cos^2(x)-cos(x)-2=0\)

 

cos(x)=a

 

\(a^2-1a-2=0\)

      p        q

 

\(a=-\frac{p}{2}\pm\sqrt{(\frac{p}{2})^2-q}\) 

 

\(a=\frac{1}{2}\pm\sqrt{(\frac{1}{2})^2+2}\)

 

\(a=\frac{1}{2}\pm1.5\)

 

\(a_1=2\\cos(x)=2\\deleted \)

 

\(a_2=\frac{1}{2}-1.5\\cos(x)=-1\\x=arc\ cos (-1)\)

 

\(\large x=\pi\\or\\x=180°\)

 

laugh  !

asinus  Jun 1, 2017
 #1
avatar+7607 
0

sin^2(x) + cos(x) + 1 = 0 In the interval [0, 2π)

 

The answer is above.

 

laugh  !

asinus  Jun 1, 2017

46 Online Users

avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.