+0  
 
+2
147
1
avatar+6899 

sin^2(x) + cos(x) + 1 = 0 In the interval [0, 2π)

 

\(sin^2(x)+cos(x)+1=0\)

 

\(sin^2(x)=1-cos^2(x)\)

 

\(1-cos^2(x)+cos(x)+1=0\)

 

\(cos^2(x)-cos(x)-2=0\)

 

cos(x)=a

 

\(a^2-1a-2=0\)

      p        q

 

\(a=-\frac{p}{2}\pm\sqrt{(\frac{p}{2})^2-q}\) 

 

\(a=\frac{1}{2}\pm\sqrt{(\frac{1}{2})^2+2}\)

 

\(a=\frac{1}{2}\pm1.5\)

 

\(a_1=2\\cos(x)=2\\deleted \)

 

\(a_2=\frac{1}{2}-1.5\\cos(x)=-1\\x=arc\ cos (-1)\)

 

\(\large x=\pi\\or\\x=180°\)

 

laugh  !

asinus  Jun 1, 2017
Sort: 

1+0 Answers

 #1
avatar+6899 
0

sin^2(x) + cos(x) + 1 = 0 In the interval [0, 2π)

 

The answer is above.

 

laugh  !

asinus  Jun 1, 2017

14 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details