+0  
 
+10
2592
5
avatar

Find all posible solutions

Sin(5x)=Sin(3x)

Guest Dec 4, 2015

Best Answer 

 #3
avatar+78577 
+15

sin(3x)  = sin(4x -x )  = sin4xcosx - sinxcos4x

 

sin(5x)  = sin(4x + x)  = sin4xcosx + sinxcos4x     .......so....

 

sin4xcosx + sinxcos4x  =  sin4xcosx - sinxcos4x

 

2sinxcos4x  = 0      divide both sides by 2

 

sinxcos4x = 0     

 

So either  

 

sinx  = 0     which happens at 0 + nPi    where n is an integer

 

or

 

cos(4x)  = 0

 

cos(x)  = 0   at   pi/2 and  3pi/2

 

So.....dividing each angle by 4 we have that

 

cos(4x)  =  0   at    pi/8 + n(pi/4)   where n is an integer

 

And   at    3pi/8 + n(pi/4).....however  the previous solution covers this one as well....so we have.......pi/8 + n(pi/4)

 

Here's the graph  of the intersection points [ in degrees].......https://www.desmos.com/calculator/jv5zqyexum

 

 

 

cool cool cool

CPhill  Dec 4, 2015
edited by CPhill  Dec 5, 2015
edited by CPhill  Dec 5, 2015
Sort: 

5+0 Answers

 #1
avatar+495 
+15

sin(5x) = sin(3x)

 

general solution in radians:

 

x = 0 + πn

 

x=π/8 + πn/4

LambLamb  Dec 4, 2015
edited by LambLamb  Dec 4, 2015
 #2
avatar+90988 
+10

Good work LambLamb,

 

I got exactly the same answer.

But

are you going to show how you did it? 

Melody  Dec 4, 2015
 #3
avatar+78577 
+15
Best Answer

sin(3x)  = sin(4x -x )  = sin4xcosx - sinxcos4x

 

sin(5x)  = sin(4x + x)  = sin4xcosx + sinxcos4x     .......so....

 

sin4xcosx + sinxcos4x  =  sin4xcosx - sinxcos4x

 

2sinxcos4x  = 0      divide both sides by 2

 

sinxcos4x = 0     

 

So either  

 

sinx  = 0     which happens at 0 + nPi    where n is an integer

 

or

 

cos(4x)  = 0

 

cos(x)  = 0   at   pi/2 and  3pi/2

 

So.....dividing each angle by 4 we have that

 

cos(4x)  =  0   at    pi/8 + n(pi/4)   where n is an integer

 

And   at    3pi/8 + n(pi/4).....however  the previous solution covers this one as well....so we have.......pi/8 + n(pi/4)

 

Here's the graph  of the intersection points [ in degrees].......https://www.desmos.com/calculator/jv5zqyexum

 

 

 

cool cool cool

CPhill  Dec 4, 2015
edited by CPhill  Dec 5, 2015
edited by CPhill  Dec 5, 2015
 #4
avatar
+10

Solve for x:
sin(5 x) = sin(3 x)

Take the inverse sine of both sides:
5 x = pi-3 x+2 pi n_1  for  n_1  element Z
   or  5 x = 3 x+2 pi n_2  for  n_2  element Z

Add 3 x to both sides:
8 x = pi+2 pi n_1  for  n_1  element Z
   or  5 x = 3 x+2 pi n_2  for  n_2  element Z

Divide both sides by 8:
x = pi/8+(pi n_1)/4  for  n_1  element Z
   or  5 x = 3 x+2 pi n_2  for  n_2  element Z

Subtract 3 x from both sides:
x = pi/8+(pi n_1)/4  for  n_1  element Z
   or  2 x = 2 pi n_2  for  n_2  element Z

Divide both sides by 2:
Answer: | 
| x = pi/8+(pi n_1)/4  for  n_1  element Z
   or  x = pi n_2  for  n_2  element Z

Guest Dec 5, 2015
 #5
avatar+90988 
+10

sin(5x) = sin(3x)

Thanks LambLamb CPhill and guest #4    laugh

I think this answer is probably very similar to  guest     #4      

 

\(5x=3x+2\pi n\qquad or \qquad 5x=\pi-3x+2\pi n\\ 2x=2\pi n\qquad \qquad or \qquad 8x=\pi+2\pi n\\ x=\pi n\qquad \qquad \quad or \qquad x=\frac{\pi+2\pi n}{8}\qquad where\;\;n\in Z\\\)

Melody  Dec 5, 2015

12 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details