+0  
 
0
1330
7
avatar

sin law

8sin40/sin70

 May 27, 2015

Best Answer 

 #6
avatar+129852 
+5

Sorry, Mathcad, but.....

 

sin(70) sin(40)cos(30) +cos(30)sin(40)

 

sin(70) = sin(40)cos(30) + sin(30)cos(40)

 

And .... 8sin(40)/sin (70) = Melody's answer  ...... which is not =   8/√3  = 4.6188021535170061

 

 

 

 May 27, 2015
 #1
avatar+118677 
+5

$${\frac{{\mathtt{8}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{40}}^\circ\right)}}{\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{sin}}{\left({\mathtt{70}}^\circ\right)}}} = {\mathtt{5.472\: \!322\: \!293\: \!214\: \!088\: \!1}}$$

.
 May 27, 2015
 #2
avatar
0

11.7 Yo Welcome

 May 27, 2015
 #3
avatar+122 
0

.Melody,I don't think simply plugging in values is what the question is really about.This is testing one's knowledge of the addition formulae,properties of triangles and manipulation of fractions.  As below:

sin(a+b)=sin(a)cos(b) +cos(a)sin(b) so you can write sin70 as 

sin(70)=sin(40)cos(30) +cos(30)sin(40)

Now the expression reads

8sin(40)/sin(40)cos(30)+cos(30)sin(40).One should also know (from the equilateral triangle) that cos(30)=1/sqrt2.

So now all we have to do is simplify a fraction,getting

8sin(40)/sin(70)= 8sin(40)/(1/sqrt2sin(40) +1/sqrt2sin(40)

                         =8sin(40)/(2/sqrt2sin(40)

                          =8sin(40)/sqrt2sin(40)

Now the sin(40)'s cancel and all you have to do is resolve 8/sqrt2 and the answer is 4 times root 2.

 May 27, 2015
 #4
avatar+122 
0

slight correction,cos(30) is (sqrt3)/2.Amend accordingly,and solution drops out as 

8/(sqrt3). Which still gives you Melody's answer of course.

 May 27, 2015
 #5
avatar
0

Come on Melody, you have to respond to that (mostly) garbage.

 May 27, 2015
 #6
avatar+129852 
+5
Best Answer

Sorry, Mathcad, but.....

 

sin(70) sin(40)cos(30) +cos(30)sin(40)

 

sin(70) = sin(40)cos(30) + sin(30)cos(40)

 

And .... 8sin(40)/sin (70) = Melody's answer  ...... which is not =   8/√3  = 4.6188021535170061

 

 

 

CPhill May 27, 2015
 #7
avatar+118677 
0

Come on anon, mathcad has answered in good faith.

We all learn from our errors :)

I am glad that you got involved mathcad :)

 May 28, 2015

1 Online Users

avatar