+0  
 
+1
153
3
avatar+3031 

1. What is the slope of the line determined by any two solutions to the equation \(\frac{2}{x}+\frac{3}{y} = 0\)?Express your answer as a common fraction.

tertre  Mar 31, 2018

Best Answer 

 #1
avatar+7266 
+4

Let's find two solutions by choosing a value for  x  and solving for  y .

 

To find a first solution I choose  x = 1 .

 

\(\frac21+\frac3y=0\\ 2+\frac3y=0\\ \frac3y=-2\\ 3=-2y\\ -\frac{3}{2}=y\)

 

When  x = 1 ,  y = -3/2  . So one solution is  (1, -3/2) .

 

To find a second solution I choose  x = 2 .

 

\(\frac22+\frac3y=0\\ 1+\frac3y=0\\ \frac3y=-1\\ 3=-1y\\ -3=y\)

 

When  x = 2 ,  y = -3 . So another solution is  (2, -3)

 

slope between  (1, -3/2)  and  (2, -3)   \(=\,\frac{(-3)-(-\frac32)}{2-1}\\ =\,\frac{(-3)-(-\frac32)}{1}\\ =\,(-3)-(-\frac32)\\ =\,-3+\frac32\\ =\,-\frac62+\frac32\\ =\,-\frac32\)

 

Another way to find the slope is to get the original equation into slope intercept form.

 

\(\frac2x+\frac3y=0\\ 2+\frac{3x}{y}=0\qquad\text{and }x\neq0\\ 2y+3x=0\qquad\text{and }y\neq0\\ 2y=-3x\\ y=-\frac32x\)

 

The slope between any two points is -3/2 .

hectictar  Mar 31, 2018
edited by hectictar  Mar 31, 2018
 #1
avatar+7266 
+4
Best Answer

Let's find two solutions by choosing a value for  x  and solving for  y .

 

To find a first solution I choose  x = 1 .

 

\(\frac21+\frac3y=0\\ 2+\frac3y=0\\ \frac3y=-2\\ 3=-2y\\ -\frac{3}{2}=y\)

 

When  x = 1 ,  y = -3/2  . So one solution is  (1, -3/2) .

 

To find a second solution I choose  x = 2 .

 

\(\frac22+\frac3y=0\\ 1+\frac3y=0\\ \frac3y=-1\\ 3=-1y\\ -3=y\)

 

When  x = 2 ,  y = -3 . So another solution is  (2, -3)

 

slope between  (1, -3/2)  and  (2, -3)   \(=\,\frac{(-3)-(-\frac32)}{2-1}\\ =\,\frac{(-3)-(-\frac32)}{1}\\ =\,(-3)-(-\frac32)\\ =\,-3+\frac32\\ =\,-\frac62+\frac32\\ =\,-\frac32\)

 

Another way to find the slope is to get the original equation into slope intercept form.

 

\(\frac2x+\frac3y=0\\ 2+\frac{3x}{y}=0\qquad\text{and }x\neq0\\ 2y+3x=0\qquad\text{and }y\neq0\\ 2y=-3x\\ y=-\frac32x\)

 

The slope between any two points is -3/2 .

hectictar  Mar 31, 2018
edited by hectictar  Mar 31, 2018
 #3
avatar+3031 
+1

Thanks so much, hectictar!

tertre  Apr 2, 2018
 #2
avatar+88871 
+2

Nice, hectictar  !!!!

 

cool cool cool

CPhill  Mar 31, 2018

8 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.