The volume of a conical frustum is 2401π cu. cm. If the radius of the lower base is 14 cm and the altitude is 21-cm.
Calculate the lateral area of the conical frustum. *
a.1452 sq. cm
b.1454 sq. cm
c.1463 sq. cm
d.1460 sq. cm
Let the lower base = R and the upper base = r
And we have that
V = (pi/3) height ( r^2 + Rr + R^2)
2401 pi = (pi/3) 21 * ( r^2 + 14r + 14^2)
2401/7 = r^2 + 14r + 196
343 = r^2 + 14r+ 196
r^2 + 14r - 147 = 0
(r + 21) ( r - 7) = 0
r - 7 = 0
r = 7(cm) = the upper base
Lateral surface area = pi *slant height * ( R + r)
slant height = sqrt [ (R-r)^2 + h^2 ] = sqrt [ (14 - 7)^2 + 21^2 ] = sqrt [ 49 + 441] = sqrt [ 490] =
7sqrt (10)
Lateral surface area = pi * 7sqrt (10) * ( 14 + 7) = 147sqrt (10) ≈ 1460 cm^2