We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
372
1
avatar

How do I rearrange the steady state function in the beginning of b into the k* and y* equations? (function from part a is Akα)

 

 

 Apr 20, 2018

Best Answer 

 #1
avatar+27902 
+2

If we start from \(sAk^\alpha=(\delta+n+g)k\) then divide both sides by \(k^\alpha(\delta+n+g)\) we get \(\frac{sA}{\delta+n+g}=\frac{k}{k^\alpha}\)

 

This is \(\frac{sA}{\delta+n+g}=k^{1-\alpha}\)  Take the \(1-\alpha\) root of both sides to get:  \((\frac{sA}{\delta+n+g})^\frac{1}{1-\alpha}=k\)  which isn't quite the same as your expression for \(k^*\), unless \(k^*=k^\alpha\).

 Apr 20, 2018
 #1
avatar+27902 
+2
Best Answer

If we start from \(sAk^\alpha=(\delta+n+g)k\) then divide both sides by \(k^\alpha(\delta+n+g)\) we get \(\frac{sA}{\delta+n+g}=\frac{k}{k^\alpha}\)

 

This is \(\frac{sA}{\delta+n+g}=k^{1-\alpha}\)  Take the \(1-\alpha\) root of both sides to get:  \((\frac{sA}{\delta+n+g})^\frac{1}{1-\alpha}=k\)  which isn't quite the same as your expression for \(k^*\), unless \(k^*=k^\alpha\).

Alan Apr 20, 2018

17 Online Users

avatar
avatar