+0  
 
0
208
3
avatar+115 

"Simplify using identities so that you can solve the equation. Give the general solution in radians."
sin(x)=1-2cos^2(x)

I ended up getting...
x = - pi/6 + n2pi, x = - 5pi/6 + n2pi, x = pi/2 + n2pi
...which apparently is incorrect. I'd appreciate some help here since I'm not sure how else to solve this. 

Aleguan  Jan 16, 2018
 #1
avatar+87639 
+1

sin (x)  =   1  - 2cos^2 (x)

 

Note  that   cos^2(x)   =  1 - sin^2(x)

 

So  we have

 

sin x  =   1 - 2  [  1  - sin^2 (x) ]

 

sin x  =  1  - 2  +  2sin^2(x)     

 

sin (x)  =  - 1  +  2sin^2(x)         rearrange as

 

2sin^2(x)  -  sin (x)  - 1  =  0        factor as

 

(2sin (x)  + 1) (sin (x) - 1)  =  0

 

Se each factor to 0 and solve

 

2sin x  + 1  =  0      subtract  1 from  both sides

 

2sin x  = -1         divide both sides by 2

 

sinx  =  -1/2    and this occurs  at    7 pi / 6    + n*2pi   and  11pi / 6  + n*2pi     

[ where n is an integer]

 

And..for the other solution we have that

 

sin x  - 1   = 0   add 1 to both sides

 

sin x  = 1     and this occurs at   pi/2 + n*2pi 

 

 

 

cool cool cool

CPhill  Jan 16, 2018
 #2
avatar+115 
+1

Sweet, thanks for showing all the steps. Really helps me understand.

Aleguan  Jan 16, 2018
 #3
avatar+87639 
0

You're welcome  !!!!

 

 

cool cool cool

CPhill  Jan 16, 2018

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.