We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
59
6
avatar+160 

I'm interested in part A

 

Thanks & regards

 Nov 25, 2019
 #1
avatar+67 
+3

Square the equation and replace the cos squared term using the identity

\(\displaystyle \cos^{2}(A/2)=(1/2)(1+\cos(A)).\)

Use the cosine rule to replace the cosine term with (b^2 + c^2 - a^2)/(2bc), and simplify.

That should get you to 1 - a^2/((b + c)^2)), so finally cos^2 = 1 - sin^2.

 Nov 25, 2019
 #2
avatar+23575 
+4

Solutions for Triangles

 

\(\begin{array}{|rcll|} \hline \mathbf{x^2+a^2} &=& \mathbf{(b+c)^2} \\ x^2+a^2 &=& b^2+2bc+c^2 \\ x^2&=& b^2+2bc+c^2-a^2 \\ x &=& \sqrt{b^2+2bc+c^2-a^2} \\ x &=& \sqrt{2bc+ \mathbf{b^2+c^2-a^2}} \\\\ && \boxed{a^2=b^2+c^2-2bc\cos(A)\\ \mathbf{b^2+c^2-a^2 = 2bc\cos(A)} } \\\\ x &=& \sqrt{2bc+ 2bc\cos(A)} \\ x &=& \sqrt{2bc\Big(1+ \mathbf{\cos(A)}\Big)} \\\\ && \boxed{\cos(A)=\cos^2\left(\dfrac{A}{2}\right)-\sin^2\left(\dfrac{A}{2}\right) \\ \cos(A)=\cos^2\left(\dfrac{A}{2}\right)-\left(1-\cos^2\left(\dfrac{A}{2}\right) \right) \\ \mathbf{\cos(A)=2\cos^2\left(\dfrac{A}{2}\right)-1} } \\\\ x &=& \sqrt{2bc\left(1+ 2\cos^2\left(\dfrac{A}{2}\right)-1\right)} \\ x &=& \sqrt{2bc\left( 2\cos^2\left(\dfrac{A}{2}\right) \right)} \\ x &=& \sqrt{4bc \cos^2\left(\dfrac{A}{2}\right) } \\ \mathbf{x} &=& \mathbf{2\sqrt{bc} \cos\left(\dfrac{A}{2}\right)} \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \sin(\theta) &=& \dfrac{x}{b+c} \quad | \quad \mathbf{x=2\sqrt{bc} \cos\left(\dfrac{A}{2}\right)} \\\\ \mathbf{\sin(\theta)} &=& \mathbf{ \dfrac{2\sqrt{bc} \cos\left(\dfrac{A}{2}\right)}{b+c} } \\\\ \hline \\ \cos(\theta) &=& \dfrac{a}{b+c} \\\\ \mathbf{(b+c)\cos(\theta)} &=& \mathbf{a} \\ \hline \end{array}\)

 

laugh

 Nov 25, 2019
edited by heureka  Nov 25, 2019
 #3
avatar+160 
+3

Thanks for your response!! Its a great joy to watch you solve such problems...very grateful ..& great respect for your super knowledge!!

Regards

Old Timer

 Nov 26, 2019
 #4
avatar
0

Beware though !

One of these answers is a load of rubbish.

Guest Nov 26, 2019
 #5
avatar+105989 
+1

I have not studied these answers but I doubt very much that either one is rubbish.

 

Tiggsy and Heureka are two of our top mathematicians here. 

 

Thanks for your answers guys. I am hoping I find time to study them.    laugh

Melody  Nov 26, 2019
 #6
avatar+23575 
+2

Thank you, OldTimer !

Thank you, Melody !

 

laugh

heureka  Nov 27, 2019
edited by heureka  Nov 27, 2019

15 Online Users

avatar
avatar
avatar