Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1217
3
avatar

Solve. (6√6)^−x+3 = 1/6·216^2x−3

 

Step by step help please

 Jan 14, 2020
 #1
avatar+299 
0

Is it [(6√6)^-x]+3=1/6·[216^2x]−3

or (6√6)^[−x+3] = 1/6·216^[2x−3]

 Jan 14, 2020
 #2
avatar
0

it's  (6√6)^[−x+3] = 1/6·216^[2x−3]

Guest Jan 14, 2020
 #3
avatar
0

This problem may look it involves logs but It can be solved using exponentials and indices laws.

 

Let's first write it in latex form so it is clearer:

(66)x+3=162162x3

Notice the bracket (66)x+3 Ignore the exponent right now, 

we know that: (66)=(660.5) 

Now back the exponent

(660.5)x+3 using the law: (ab)c=acbc

6x+360.5(x+3) Multiply the bracket by the half, we get, 6x+360.5x+1.5

Using the law ab+c=abac

6x6360.5x61.5 

The right hand side now,

162162x3 

We know that 

216=63

16=61

6163(2x3) apply the same rules,

6166x9 

Now we have both sides simplified 

6x6360.5x61.5=6166x9

Notice -x and -0.5x same base, we add exponents 

Notice 3 and 1.5, same base again so we add exponents

61.5x64.5=6166x9

 

Now divide by 61

61.5x64.5(1)=61.5x65.5=66x9

Notice 66x9=66x69

61.5x65.5=66x69

Divide by 69

61.5x614.5=66x

Divide by 61.5x

614.5=67.5x

The same base, therefore, exponents are equal (Law: ab=ac,b=c)

14.5=7.5x Divide by 7.5

x=14.57.5=1.93333333 the 3 is recurring.

 Jan 14, 2020

0 Online Users