We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
41
4
avatar

1. 4^2x = 32^1/2

2. 9^x = 3^x-2

3. 2^x = 4^x+1

4. 4^x = 10

5. (1/4)^2x = (1/2)^x

6. 2.4^3x+1 = 9

 Apr 25, 2019
 #1
avatar+100424 
+2

1. 4^2x = 32^1/2  ......the idea is to get the bases the same and then solve for the exponents

 

(2^2) ^(2x)   = (2^5)^(1/2)

(2)^(4x)  = (2)^(5/2)

4x  = 5/2      divide both sides by 4

x  = 5/8

 

 

2. 9^x = 3^x-2

 

(3^2)^x  =3^(x - 2)

(3)^(2x)  = 3^(x - 2)

2x  = x - 2     subtract x from both sides

x = - 2

 

 

3. 2^x = 4^x+1

 

2^x  = (2^2)^(x + 1)

2^x = (2)^(2x + 2)

x = 2x + 2      subtract 2x from both sides

-1x  = 2         divide both sides by -1

x = -2

 

 

cool cool cool

 Apr 26, 2019
 #2
avatar+100424 
+2

4.    4^x  = 10

 

Take the log of each side

 

log 4^x  = log 10       and we can write

 

x * log 4  = 1      divide both sides by log 4

 

x  =  1 / log 4

 

 

 

5. (1/4)^2x = (1/2)^x

 

[ (1/2)^2 ]^(2x)  = (1/2)^x

 

(1/2)^(4x)  = (1/2)^x

 

4x  = x

 

4x - x  = 0

 

3x  = 0

 

x  = 0

 

 

cool cool cool

 Apr 26, 2019
 #3
avatar
0

Thank you so much, I needed this

Guest Apr 26, 2019
 #4
avatar+100424 
+2

Last one

 

6.   2.4^(3x+1) = 9    take the log of  both sides

 

log (2.4) ^(3x + 1)  = log 9      and we can write

 

(3x + 1) * log 2.4  = log 9

 

3x * log 2.4 + 1 * log 2.4 =  log 9

 

(3 log 2.4)x = log 9 - log 2.4     divide both sides by 3 log 2.4

 

x  =  [ log 9 - log 2.4 ] / [ 3* log 2.4 ] ≈  0.5033

 

 

cool cool cool

 Apr 26, 2019

8 Online Users