\(3 sec^2 (x) - 2\sqrt{3} tan (x) - 6 = 0\)
Using the identity sec^2(x) = 1+tan^2(x)
\(3(1+tan^2(x)) - 2\sqrt{3} tan (x) - 6 = 0\)
\(3tan^2(x) - 2\sqrt{3} tan (x) - 3 = 0\)
\(3tan^2(x) - 2\sqrt{3} tan (x) - 3 = 0\)
\((3tan^2(x)+\sqrt{3})(tan^2(x)-\sqrt{3})=0\)
\(tan(x)=\sqrt{-\sqrt{3}/3}\)
\(no \space solution\)
\(tan(x)=\sqrt[4]{3}\)
\(x=52.8°\space or \space 233°\)