Solve: 3·nC4 = 5·n-1C5
---> 3 · n! / [ 4! · (n - 4)! ] = 5 · (n - 1)! / [ 5! · ( (n - 1) - 5 )! ]
---> 3 · n! / [ 4! · (n - 4)! ] = 5 · (n - 1)! / [ 5! · ( n - 6 )! ]
---> Divide both sides by (n - 1)!:
3 · n / [ 4! · (n - 4)! ] = 5 · 1 / [ 5! · ( n - 6 )! ]
---> On the right side, cancel the 5 into 5!: [ 5 / 5! = 1 / 4! ]
3 · n / [ 4! · (n - 4)! ] = 1 / [ 4! · ( n - 6 )! ]
---> Multiply both sides by 4!:
3 · n / (n - 4)! = 1 / ( n - 6 )!
---> Multiply both sides by (n - 6)!:
3 · n / [ (n - 4) · (n - 5) ] = 1
---> 3 · n = (n - 4) · (n - 5)
---> 3n = n2 - 9n + 20
---> 0 = n2 - 12n + 20
---> 0 = (n - 10)(n - 2)
---> Either n = 10 or n = 2 [2 is imposible]