+0  
 
0
58
3
avatar+311 

Solve for the rational numbers x and y:

 

2^(x+y) * 3^(x-y) * 6^(2x+2y) = 72

 

Express your answer as an ordered (x,y) pair .

 Jan 17, 2019
 #1
avatar+429 
+1

6^(2x+2y) is 2^(2x+2y)*3^(2x+2y), so it is now 2^(3x+3y)*3^(3x+y)=72.

 

with some intuition, you can see that 2^3*3^2=72, so 3x+3y=3 and 3x+y=2.

 

now you subtract the second equation from the first so 2y=1 so y=1/2.

 

plugging back in, you can see that 1/2 is also x.

 

so the answer is (1/2, 1/2).

 

HOPE THIS HELPED!

 Jan 17, 2019
 #2
avatar+96201 
+3

2^(x+y) * 3^(x-y) * 6^(2x+2y) = 72

 

2^(x + y) * 3^(x - y) * ( 6^2 )^(x + y)  =  72

 

2^(x + y) * 3^(x - y) * (36)^(x + y) = 72

 

[ 2 * 36]^(x + y) * 3^(x - y) = 72

 

[72]^(x + y) * 3^(x - y) =  72

 

If we let x, y =  1/2 we have that

 

2^1 * 3^0 * 6^2 = 72

 

2 * 1 * 36 = 72

 

So

 

(x, y) =  (1/2, 1/2)

 

cool cool cool

 Jan 17, 2019
 #3
avatar+97575 
+4

2^(x+y) * 3^(x-y) * 6^(2x+2y) = 72

 

\(2^{x+y} * 3^{x-y} * 6^{2x+2y}= 72\\ 2^{x+y} * 3^{x-y} * 2^{2(x+y)}*3^{2(x+y)}= 3^2*2^3\\ 3^{x-y+2x+2y} * 2^{3(x+y)}= 3^2*2^3\\ 3^{3x+y} * 2^{3x+3y}= 3^2*2^3\\ so\\ 3x+y=2\quad(1a)\\ 3x=2-y \quad (1b)\\ 3x+3y=3\quad(2a)\\ x+y=1\quad(2b)\\ y=1-x\quad(2c)\\ sub (2c) into (1b)\\ 3x=2-(1-x)\\ 3x=1+x\\ 2x=1\\ {\bf{x=0.5,\quad y=0.5}} \\ check\\ 2^1*3^0*6^{2}=72\qquad \text{Das ist ausgezeichnet!} \)

.
 Jan 17, 2019

18 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.