Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
1551
3
avatar

solve for x: (3^(x+2))*(5^(x-1))=15^(2x)

 Jul 14, 2015

Best Answer 

 #3
avatar+33658 
+13

This could be made a little less "loggy" as follows:

 

3x+25x1=152x3x325x51=152x(3×5)x×95=152x15x×95=152x152xx=9515x=95x×log15=log95x=log1.8log15

 

x=log10(1.8)log10(15)x=0.2170516132466387

 

heureka beat me to it!

 Jul 14, 2015
 #1
avatar+427 
+13

(3(x+2))×(5(x1))=15(2×x)

We got a lot of messyness in the powers here. We can split them into more individual numbers to seperate off the constants and variables.

3x×32×5x×51=(152)x

9×(15)×5x×3x=225x

(95)×5x×3x=225x

Now we can put everything into logarithm form. Remember:

Log(a^b) = b * log(a)

Log(a*b) = log(a) + log(b)

log10(95)+x×log10(5)+x×log10(3)=x×log10(225)

Let's move over all the 'x' multiples over, so we can handle them together.

log10(95)=x×log10(225)x×log10(5)x×log10(3)

Factorise it a little, so we can now split the "x" from the rest of the formula

log10(95)=x×(log10(225)log10(5)log10(3))

Simplify the logarithms and re-arrange the forumula

log10(95)=x×log10((2255)3)

log10(95)=x×log10(15)

log10(95)log10(15)=x

x=0.2170516132466387

.
 Jul 14, 2015
 #2
avatar+26397 
+13

solve for x: (3^(x+2))*(5^(x-1))=15^(2x)

3x+25x1=152x3x325x51=152x3x5x3251=152x(35)x3251=152x15x95=152x15x1.8=152x15x1.8=15x+x15x1.8=15x15x|:15x1.8=15x15x=1.8|ln()ln(15x)=ln(1.8)xln(15)=ln(1.8)x=ln(1.8)ln(15)x=0.587786664902.70805020110x=0.21705161325

 

 Jul 14, 2015
 #3
avatar+33658 
+13
Best Answer

This could be made a little less "loggy" as follows:

 

3x+25x1=152x3x325x51=152x(3×5)x×95=152x15x×95=152x152xx=9515x=95x×log15=log95x=log1.8log15

 

x=log10(1.8)log10(15)x=0.2170516132466387

 

heureka beat me to it!

Alan Jul 14, 2015

1 Online Users