+0  
 
0
486
2
avatar

solve for x : log base 9 X^2=9

Guest Aug 6, 2015

Best Answer 

 #2
avatar+19994 
+10

 $$\small$\text{
Solve for x : $\log_9{(x^2)}=9$
}}$$

 

$$\small{\text{Formula: $\boxed{~ \log_b{(b^a)}=a~}$}}\\\\
\small{\text{
We have $b=9$, and $a = 9$ so $\log_9{(9^9)}=9$, but $9^9$ is $x^2$
}}\\\\
\small{\text{$
\begin{array}{rcl}
x^2 &=& 9^9\\
x &=& 9^{\frac{9}{2}}\\
x &=& \left(\sqrt{9} \right)^9\\
x &=& \left(\sqrt{3^2} \right)^9\\
x &=& 3^9\\
\mathbf{x} & \mathbf{=} & \mathbf{19683}\\
\\
\hline
\\
\end{array}
$}}\\$$

 

heureka  Aug 6, 2015
 #1
avatar+93289 
+10

$$\\log_9x^2=9\\\\
2log_9x=9\\\\
log_9x=9/2\\\\
9^{log_9x}=9^{9/2}\\\\
x=9^{9/2}\\\\
x=3^9\\\\
x=19683$$

 

 

check:

$${{log}}_{{\mathtt{9}}}{\left({{\mathtt{19\,683}}}^{{\mathtt{2}}}\right)} = {\mathtt{9}}$$

Melody  Aug 6, 2015
 #2
avatar+19994 
+10
Best Answer

 $$\small$\text{
Solve for x : $\log_9{(x^2)}=9$
}}$$

 

$$\small{\text{Formula: $\boxed{~ \log_b{(b^a)}=a~}$}}\\\\
\small{\text{
We have $b=9$, and $a = 9$ so $\log_9{(9^9)}=9$, but $9^9$ is $x^2$
}}\\\\
\small{\text{$
\begin{array}{rcl}
x^2 &=& 9^9\\
x &=& 9^{\frac{9}{2}}\\
x &=& \left(\sqrt{9} \right)^9\\
x &=& \left(\sqrt{3^2} \right)^9\\
x &=& 3^9\\
\mathbf{x} & \mathbf{=} & \mathbf{19683}\\
\\
\hline
\\
\end{array}
$}}\\$$

 

heureka  Aug 6, 2015

4 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.