+0  
 
0
178
2
avatar

x^3 = 2x+1 

Guest Jan 7, 2015

Best Answer 

 #2
avatar+18829 
+10

x^3 = 2x+1

$$x^3 -2x-1 = 0 \qquad \Rightarrow x_1=-1 \\ \\
(x^3 -2x-1) : (x+1) = x^2-x-1 \\\\
(x+1)\underbrace{(x^2-x-1)}_{=0} = 0\\\\
x^2-x-1 = 0\\
x_{2,3}=\frac{
1\pm\sqrt{1-1*4*(-1)}
}
{2*1} = \frac{
1\pm\sqrt{5 }
}
{2} \\ \\
x_2 = \frac{1+\sqrt{5}}{2} =1.61803398875 \\\\
x_3 = \frac{1-\sqrt{5}}{2} =-0.61803398875$$

heureka  Jan 7, 2015
Sort: 

2+0 Answers

 #1
avatar+81032 
+10

x^3 = 2x+1    subtract everything on the right side to make it 0....so we have....

x^3 - 2x - 1  =  0     and from the Facror Theorem, we have that -1 is a root (solution)

Therefore, using a little synthetic division, we have

 

-1  [  1    0   - 2    -1 ]

            - 1     1     1

       -----------------------

       1     -1   -1     0

 

This tells us that the polynomial remaining after we divide  x^3 - 2x -1  by (x + 1)  = x^2 - x - 1

And setting this = 0, we have that x =

$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,-\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{1}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,-\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
{\mathtt{x}} = {\frac{\left({\sqrt{{\mathtt{5}}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{1}}\right)}{{\mathtt{2}}}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{0.618\: \!033\: \!988\: \!749\: \!894\: \!8}}\\
{\mathtt{x}} = {\mathtt{1.618\: \!033\: \!988\: \!749\: \!894\: \!8}}\\
\end{array} \right\}$$

So these are the 3 solutions......BTW.....the last 2 solutions are better known as  "-phi" and "Phi"......

 

 

CPhill  Jan 7, 2015
 #2
avatar+18829 
+10
Best Answer

x^3 = 2x+1

$$x^3 -2x-1 = 0 \qquad \Rightarrow x_1=-1 \\ \\
(x^3 -2x-1) : (x+1) = x^2-x-1 \\\\
(x+1)\underbrace{(x^2-x-1)}_{=0} = 0\\\\
x^2-x-1 = 0\\
x_{2,3}=\frac{
1\pm\sqrt{1-1*4*(-1)}
}
{2*1} = \frac{
1\pm\sqrt{5 }
}
{2} \\ \\
x_2 = \frac{1+\sqrt{5}}{2} =1.61803398875 \\\\
x_3 = \frac{1-\sqrt{5}}{2} =-0.61803398875$$

heureka  Jan 7, 2015

10 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details