+0  
 
0
385
2
avatar

$${\frac{{{log}}_{{\mathtt{2}}}{\left({\mathtt{4\,096}}\right)}}{{{log}}_{{\mathtt{x}}}{\left({\frac{{\mathtt{37}}}{{\mathtt{999}}}}\right)}}} = -{\mathtt{4}}$$

Guest Mar 14, 2015

Best Answer 

 #2
avatar
+5

$${\frac{{{log}}_{{\mathtt{2}}}{\left({\mathtt{4\,096}}\right)}}{{{log}}_{{\mathtt{x}}}{\left({\frac{{\mathtt{37}}}{{\mathtt{999}}}}\right)}}} = -{\mathtt{4}}$$

 

$${{log}}_{{\mathtt{2}}}{\left({\mathtt{4\,096}}\right)} = {\mathtt{12}}$$

 

$${\frac{{\mathtt{12}}}{{{log}}_{{\mathtt{x}}}{\left(\left({\frac{{\mathtt{37}}}{{\mathtt{999}}}}\right)\right)}}} = -{\mathtt{4}}$$

 

$${\mathtt{12}} = {\mathtt{\,-\,}}\left({\mathtt{4}}{\mathtt{\,\times\,}}{{log}}_{{\mathtt{x}}}{\left({\frac{{\mathtt{37}}}{{\mathtt{999}}}}\right)}\right)$$

 

$$-{\mathtt{3}} = {{log}}_{{\mathtt{x}}}{\left({\frac{{\mathtt{37}}}{{\mathtt{999}}}}\right)}$$

 

$${{\mathtt{x}}}^{-{\mathtt{3}}} = {\frac{{\mathtt{37}}}{{\mathtt{999}}}}$$

 

$${\frac{{\mathtt{1}}}{{{\mathtt{x}}}^{{\mathtt{3}}}}} = {\frac{{\mathtt{37}}}{{\mathtt{999}}}}$$

 

$${\mathtt{999}} = {\mathtt{37}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{3}}}$$

 

$${\mathtt{27}} = {{\mathtt{x}}}^{{\mathtt{3}}}$$

 

$${\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\mathtt{27}}}} = {\mathtt{x}}$$

 

$${\mathtt{x}} = {\mathtt{3}}$$

Guest Mar 14, 2015
 #1
avatar+27246 
+5

 

See Anonymous's answer below.

Alan  Mar 14, 2015
 #2
avatar
+5
Best Answer

$${\frac{{{log}}_{{\mathtt{2}}}{\left({\mathtt{4\,096}}\right)}}{{{log}}_{{\mathtt{x}}}{\left({\frac{{\mathtt{37}}}{{\mathtt{999}}}}\right)}}} = -{\mathtt{4}}$$

 

$${{log}}_{{\mathtt{2}}}{\left({\mathtt{4\,096}}\right)} = {\mathtt{12}}$$

 

$${\frac{{\mathtt{12}}}{{{log}}_{{\mathtt{x}}}{\left(\left({\frac{{\mathtt{37}}}{{\mathtt{999}}}}\right)\right)}}} = -{\mathtt{4}}$$

 

$${\mathtt{12}} = {\mathtt{\,-\,}}\left({\mathtt{4}}{\mathtt{\,\times\,}}{{log}}_{{\mathtt{x}}}{\left({\frac{{\mathtt{37}}}{{\mathtt{999}}}}\right)}\right)$$

 

$$-{\mathtt{3}} = {{log}}_{{\mathtt{x}}}{\left({\frac{{\mathtt{37}}}{{\mathtt{999}}}}\right)}$$

 

$${{\mathtt{x}}}^{-{\mathtt{3}}} = {\frac{{\mathtt{37}}}{{\mathtt{999}}}}$$

 

$${\frac{{\mathtt{1}}}{{{\mathtt{x}}}^{{\mathtt{3}}}}} = {\frac{{\mathtt{37}}}{{\mathtt{999}}}}$$

 

$${\mathtt{999}} = {\mathtt{37}}{\mathtt{\,\times\,}}{{\mathtt{x}}}^{{\mathtt{3}}}$$

 

$${\mathtt{27}} = {{\mathtt{x}}}^{{\mathtt{3}}}$$

 

$${\sqrt[{{\mathtt{{\mathtt{3}}}}}]{{\mathtt{27}}}} = {\mathtt{x}}$$

 

$${\mathtt{x}} = {\mathtt{3}}$$

Guest Mar 14, 2015

20 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.