Solve for $x$: \(\dfrac{\sqrt{3x}-4\sqrt{3}}{\sqrt{x}-\sqrt{2}}=\dfrac{2\sqrt{2x}+\sqrt{2}}{\sqrt{6x}-2\sqrt{3}}\)
I am going to try to simplify the denominators first.
The second denominator is sqrt(6x) - 2·sqrt(3).
However, 2·sqrt(3) can be written as sqrt(4)·sqrt(3) = sqrt(12)
and sqrt(12) can be written as sqrt(6)·sqrt(2),
so sqrt(6x) - 2·sqrt(3) becomes sqrt(6)·sqrt(x) - sqrt(6)·sqrt(2),
and, factoring, becomes: sqrt(6)[sqrt(x) - sqrt(2)].
This is almost the same as the first denominator, which is simply [sqrt(x) - sqrt(2)].
This means that if x = 2, these denominators are zero, so if we get an answer of 2, we'll have to throw it out.
Now, let's multiply both sides by sqrt(6)[sqrt(x) - sqrt(2)].
This cancels the denominator on the left side of the equation, but puts a factor of sqrt(6) on the left side.
This completely cancels the denominator on the right side of the equation.
We now have: sqrt(6)·[sqrt(3x) - 4sqrt(3)] = 2sqrt(2x) + sqrt(2)
Let's square both sides:
Left side: [ sqrt(6)·[sqrt(3x) - 4sqrt(3)] ]2 = 6·[ sqrt(3x) - 4sqrt(3) ]2 = 6[ 3x - 2·4·sqrt(3x)·sqrt(3) + 16·3 ]
= 6[3x - 8·3·sqrt(x) + 48] = 18x - 144sqrt(x) + 288
Right side: [ 2sqrt(2x) + sqrt(2) ]2 = 4·2x + 2·2·2·sqrt(x) + 2
= 8x + 8sqrt(x) + 2
Setting these two equal: 18x - 144sqrt(x) + 288 = 8x + 8sqrt(x) + 2
Simplifying: 10x - 152sqrt(x) + 286 = 0
Dividing by 2: 5x - 76sqrt(x) + 143 = 0
Using the quadratic formula to find sqrt(x); sqrt(x) = [ 76 +/1 sqrt(762 - 4·5·143) ] / 10
-----> sqrt(x) = 13 or 2.2
-----> x = 169 or x = 4.84
Checking both possible answers, 169 works but 4.84 is an extraneous root introduced by the squaring process.
[ √[3x] - 4√3 ] = 2√[2x] + √2
__________ __________
√x - √2 √[6x] - 2√3
[ √3 (√x - 4) ] = [ √2 ( 2√x + 1) ]
__________ _____________
√x - √2 √[6x] - √12
[ √3 (√x - 4) ] = [ √2 ( 2√x + 1) ]
__________ _____________
√x - √2 √6 [ √x - √2 ]
[ √3 (√x - 4) ] = [ √2 ( 2√x + 1) ]
_____________
√6
[ √3 (√x - 4) ] = [ ( 2√x + 1) ] / √3
3[√x - 4] = 2√x + 1
3√x - 12 = 2√x + 1
√x = 13
x = 169
Solve for x:
(sqrt(3) sqrt(x) - 4 sqrt(3))/(sqrt(x) - sqrt(2)) = (2 sqrt(2) sqrt(x) + sqrt(2))/(sqrt(6) sqrt(x) - 2 sqrt(3))
Cross multiply:
(sqrt(3) sqrt(x) - 4 sqrt(3)) (sqrt(6) sqrt(x) - 2 sqrt(3)) = (sqrt(x) - sqrt(2)) (2 sqrt(2) sqrt(x) + sqrt(2))
Subtract (sqrt(x) - sqrt(2)) (2 sqrt(2) sqrt(x) + sqrt(2)) from both sides:
(sqrt(3) sqrt(x) - 4 sqrt(3)) (sqrt(6) sqrt(x) - 2 sqrt(3)) - (sqrt(x) - sqrt(2)) (sqrt(2) + 2 sqrt(2) sqrt(x)) = 0
(sqrt(3) sqrt(x) - 4 sqrt(3)) (sqrt(6) sqrt(x) - 2 sqrt(3)) - (sqrt(x) - sqrt(2)) (sqrt(2) + 2 sqrt(2) sqrt(x)) = 26 + (-13 sqrt(2) - 2) sqrt(x) + sqrt(2) x:
26 + (-13 sqrt(2) - 2) sqrt(x) + sqrt(2) x = 0
Simplify and substitute y = sqrt(x).
26 + (-13 sqrt(2) - 2) sqrt(x) + sqrt(2) x = 26 + (-13 sqrt(2) - 2) sqrt(x) + sqrt(2) (sqrt(x))^2
= sqrt(2) y^2 + (-2 - 13 sqrt(2)) y + 26:
sqrt(2) y^2 + (-2 - 13 sqrt(2)) y + 26 = 0
The left hand side factors into a product with two terms:
(y - 13) (sqrt(2) y - 2) = 0
Split into two equations:
y - 13 = 0 or sqrt(2) y - 2 = 0
Add 13 to both sides:
y = 13 or sqrt(2) y - 2 = 0
Substitute back for y = sqrt(x):
sqrt(x) = 13 or sqrt(2) y - 2 = 0
Raise both sides to the power of two:
x = 169 or sqrt(2) y - 2 = 0
Add 2 to both sides:
x = 169 or sqrt(2) y = 2
Divide both sides by sqrt(2):
x = 169 or y = sqrt(2)
Substitute back for y = sqrt(x):
x = 169 or sqrt(x) = sqrt(2)
Raise both sides to the power of two:
x = 169 or x = 2
(sqrt(3) sqrt(x) - 4 sqrt(3))/(sqrt(x) - sqrt(2)) ⇒ (sqrt(3) sqrt(2) - 4 sqrt(3))/(sqrt(2) - sqrt(2)) = ∞^~
(2 sqrt(2) sqrt(x) + sqrt(2))/(sqrt(6) sqrt(x) - 2 sqrt(3)) ⇒ (sqrt(2) + 2 sqrt(2) sqrt(2))/(sqrt(6) sqrt(2) - 2 sqrt(3)) = ∞^~:
So this solution is incorrect
(sqrt(3) sqrt(x) - 4 sqrt(3))/(sqrt(x) - sqrt(2)) ⇒ (sqrt(3) sqrt(169) - 4 sqrt(3))/(sqrt(169) - sqrt(2)) = -(9 sqrt(3))/(sqrt(2) - 13) ≈ 1.34548
(2 sqrt(2) sqrt(x) + sqrt(2))/(sqrt(6) sqrt(x) - 2 sqrt(3)) ⇒ (sqrt(2) + 2 sqrt(2) sqrt(169))/(sqrt(6) sqrt(169) - 2 sqrt(3)) = (9 sqrt(6))/(13 sqrt(2) - 2) ≈ 1.34548:
So this solution is correct
x = 169 - Courtesy of Mathematica 11 - !!!!