+0  
 
0
430
5
avatar

atan(1/sqrt(x))-atan(sqrt(x)) = 105

Guest May 6, 2014

Best Answer 

 #5
avatar+889 
+5

$$\tan^{-1}(\frac{1}{\sqrt{x}})-\tan^{-1}(\sqrt{x})=105,$$

so, taking the tangent of both sides, and, using the identity

$$\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B},$$

together with

$$\tan(\tan^{-1}(\frac{1}{\sqrt{x}}))=\frac{1}{\sqrt{x}}\quad \text{ and }\quad \tan(\tan^{-1}(\sqrt{x}}))=\sqrt{x},$$

we have

$$\frac{1}{\sqrt{x}}-\sqrt{x}=2\tan 105.$$

Multiplying throughout by √x and rearranging,

$$x+2\sqrt{x}\tan 105-1=0,$$

which is a quadratic in √x.

Solving that, and taking the positive root gets √x≈7.595754.

To show that this satifies the original equation, remember that arctan is multivalued.

$$\tan^{-1}(\frac{1}{\sqrt{x}})-\tan^{-1}(\sqrt{x})=(7.5+k_{1}180)-(82.5+k_{2}180),$$

where k1 and k2 are integers.

 k1 = 1 and k2 = 0 produces the result 105, but there are an infinite number of other possibles.  

Bertie  May 6, 2014
 #1
avatar+92781 
0

atan(1/sqrt(x))-atan(sqrt(x)) = 105

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{1}}}{{\sqrt{{\mathtt{x}}}}}}\right)}{\mathtt{\,-\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\sqrt{{\mathtt{x}}}}\right)} = {\mathtt{105}} \Rightarrow \underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\sqrt{{\mathtt{x}}}}\right)} = {\frac{\left({\mathtt{12}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{1}}}{{\sqrt{{\mathtt{x}}}}}}\right)}{\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{{\mathtt{12}}}}$$

 

Umm, that doesn't look very helpful does it!

Melody  May 6, 2014
 #2
avatar+889 
0

arctan(1/√x) and arctan(√x) are angles.

If you take the tangent of the equation and use the usual identity

tan(A - B) = (tan A - tan B)/(1 + tan A.tan B)

you finish up with a quadratic in √x.

I don't have time to type it in at the moment, I'll do so later if it hasn't been done in the meantime.

Also, is that 105 degrees or radians ? My guess is degrees.

Bertie  May 6, 2014
 #3
avatar+26750 
0

 

I misread the question!

Alan  May 6, 2014
 #4
avatar
0

Hallo

$$\alpha =atan(\frac{1}{\sqrt{x}})=atan(\frac{1}{u})$$

$$\beta =atan(\sqrt{x})==atan(u)$$

$$\alpha + \beta \quad must \quad be \quad 90\;degrees!$$

In a right-angled triangle with "u" one Side and "1" another Side

$$\tan(\alpha)=\frac{1}{u}$$ and $$\tan(\beta)=\frac{u}{1}$$

$$atan(\tan(\alpha))=atan(\frac{1}{u})=\alpha$$

$$atan(\tan(\beta))=atan(\frac{u}{1})=\beta$$

In a right-angled triangle $$\alpha + \beta = 90\;degrees$$

$$\alpha - \beta \quad cannot \quad be \quad greater \quad than \quad 90\; degrees.$$

Guest May 6, 2014
 #5
avatar+889 
+5
Best Answer

$$\tan^{-1}(\frac{1}{\sqrt{x}})-\tan^{-1}(\sqrt{x})=105,$$

so, taking the tangent of both sides, and, using the identity

$$\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B},$$

together with

$$\tan(\tan^{-1}(\frac{1}{\sqrt{x}}))=\frac{1}{\sqrt{x}}\quad \text{ and }\quad \tan(\tan^{-1}(\sqrt{x}}))=\sqrt{x},$$

we have

$$\frac{1}{\sqrt{x}}-\sqrt{x}=2\tan 105.$$

Multiplying throughout by √x and rearranging,

$$x+2\sqrt{x}\tan 105-1=0,$$

which is a quadratic in √x.

Solving that, and taking the positive root gets √x≈7.595754.

To show that this satifies the original equation, remember that arctan is multivalued.

$$\tan^{-1}(\frac{1}{\sqrt{x}})-\tan^{-1}(\sqrt{x})=(7.5+k_{1}180)-(82.5+k_{2}180),$$

where k1 and k2 are integers.

 k1 = 1 and k2 = 0 produces the result 105, but there are an infinite number of other possibles.  

Bertie  May 6, 2014

10 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.