+0  
 
0
580
5
avatar

atan(1/sqrt(x))-atan(sqrt(x)) = 105

 May 6, 2014

Best Answer 

 #5
avatar+890 
+5

$$\tan^{-1}(\frac{1}{\sqrt{x}})-\tan^{-1}(\sqrt{x})=105,$$

so, taking the tangent of both sides, and, using the identity

$$\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B},$$

together with

$$\tan(\tan^{-1}(\frac{1}{\sqrt{x}}))=\frac{1}{\sqrt{x}}\quad \text{ and }\quad \tan(\tan^{-1}(\sqrt{x}}))=\sqrt{x},$$

we have

$$\frac{1}{\sqrt{x}}-\sqrt{x}=2\tan 105.$$

Multiplying throughout by √x and rearranging,

$$x+2\sqrt{x}\tan 105-1=0,$$

which is a quadratic in √x.

Solving that, and taking the positive root gets √x≈7.595754.

To show that this satifies the original equation, remember that arctan is multivalued.

$$\tan^{-1}(\frac{1}{\sqrt{x}})-\tan^{-1}(\sqrt{x})=(7.5+k_{1}180)-(82.5+k_{2}180),$$

where k1 and k2 are integers.

 k1 = 1 and k2 = 0 produces the result 105, but there are an infinite number of other possibles.  

 May 6, 2014
 #1
avatar+95361 
0

atan(1/sqrt(x))-atan(sqrt(x)) = 105

$$\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{1}}}{{\sqrt{{\mathtt{x}}}}}}\right)}{\mathtt{\,-\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{360^\circ}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\sqrt{{\mathtt{x}}}}\right)} = {\mathtt{105}} \Rightarrow \underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\sqrt{{\mathtt{x}}}}\right)} = {\frac{\left({\mathtt{12}}{\mathtt{\,\times\,}}\underset{\,\,\,\,^{\textcolor[rgb]{0.66,0.66,0.66}{2\pi}}}{{tan}}^{\!\!\mathtt{-1}}{\left({\frac{{\mathtt{1}}}{{\sqrt{{\mathtt{x}}}}}}\right)}{\mathtt{\,-\,}}{\mathtt{7}}{\mathtt{\,\times\,}}{\mathtt{\pi}}\right)}{{\mathtt{12}}}}$$

 

Umm, that doesn't look very helpful does it!

 May 6, 2014
 #2
avatar+890 
0

arctan(1/√x) and arctan(√x) are angles.

If you take the tangent of the equation and use the usual identity

tan(A - B) = (tan A - tan B)/(1 + tan A.tan B)

you finish up with a quadratic in √x.

I don't have time to type it in at the moment, I'll do so later if it hasn't been done in the meantime.

Also, is that 105 degrees or radians ? My guess is degrees.

 May 6, 2014
 #3
avatar+27377 
0

 

I misread the question!

 May 6, 2014
 #4
avatar
0

Hallo

$$\alpha =atan(\frac{1}{\sqrt{x}})=atan(\frac{1}{u})$$

$$\beta =atan(\sqrt{x})==atan(u)$$

$$\alpha + \beta \quad must \quad be \quad 90\;degrees!$$

In a right-angled triangle with "u" one Side and "1" another Side

$$\tan(\alpha)=\frac{1}{u}$$ and $$\tan(\beta)=\frac{u}{1}$$

$$atan(\tan(\alpha))=atan(\frac{1}{u})=\alpha$$

$$atan(\tan(\beta))=atan(\frac{u}{1})=\beta$$

In a right-angled triangle $$\alpha + \beta = 90\;degrees$$

$$\alpha - \beta \quad cannot \quad be \quad greater \quad than \quad 90\; degrees.$$

.
 May 6, 2014
 #5
avatar+890 
+5
Best Answer

$$\tan^{-1}(\frac{1}{\sqrt{x}})-\tan^{-1}(\sqrt{x})=105,$$

so, taking the tangent of both sides, and, using the identity

$$\tan(A-B)=\frac{\tan A-\tan B}{1+\tan A \tan B},$$

together with

$$\tan(\tan^{-1}(\frac{1}{\sqrt{x}}))=\frac{1}{\sqrt{x}}\quad \text{ and }\quad \tan(\tan^{-1}(\sqrt{x}}))=\sqrt{x},$$

we have

$$\frac{1}{\sqrt{x}}-\sqrt{x}=2\tan 105.$$

Multiplying throughout by √x and rearranging,

$$x+2\sqrt{x}\tan 105-1=0,$$

which is a quadratic in √x.

Solving that, and taking the positive root gets √x≈7.595754.

To show that this satifies the original equation, remember that arctan is multivalued.

$$\tan^{-1}(\frac{1}{\sqrt{x}})-\tan^{-1}(\sqrt{x})=(7.5+k_{1}180)-(82.5+k_{2}180),$$

where k1 and k2 are integers.

 k1 = 1 and k2 = 0 produces the result 105, but there are an infinite number of other possibles.  

Bertie May 6, 2014

34 Online Users

avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.