+0  
 
+3
368
1
avatar

Solve on the interval [0,2pi): 4cscx+6=-2

Guest Sep 19, 2014

Best Answer 

 #1
avatar+19207 
+8

Solve on the interval [0,2pi): 4cscx+6=-2

$$\\ 4 \csc{(x)}+6=-2 \quad | \quad -6 \\
4 \csc{(x)}=-8 \quad | \quad :2 \\
\csc{(x)}=-2 \quad | \quad \csc{(x)} = \frac{1}{\sin{(x)}} \\
\frac{1}{ \sin{(x)} } = -2 \\
\sin{(x)} = -\frac{1}{2}$$

$$x_1 = \sin^{-1}{(-\frac{1}{2} )} \\
x_1 = - \sin^{-1}{(\frac{1}{2} )} \\
x_1 = -30 \ensurement{^{\circ}} + 360 \ensurement{^{\circ}} = 330 \ensurement{^{\circ}}$$

$$x_2 = 180 \ensurement{^{\circ}} - (-30 \ensurement{^{\circ}} ) = 210 \ensurement{^{\circ}}$$

heureka  Sep 19, 2014
Sort: 

1+0 Answers

 #1
avatar+19207 
+8
Best Answer

Solve on the interval [0,2pi): 4cscx+6=-2

$$\\ 4 \csc{(x)}+6=-2 \quad | \quad -6 \\
4 \csc{(x)}=-8 \quad | \quad :2 \\
\csc{(x)}=-2 \quad | \quad \csc{(x)} = \frac{1}{\sin{(x)}} \\
\frac{1}{ \sin{(x)} } = -2 \\
\sin{(x)} = -\frac{1}{2}$$

$$x_1 = \sin^{-1}{(-\frac{1}{2} )} \\
x_1 = - \sin^{-1}{(\frac{1}{2} )} \\
x_1 = -30 \ensurement{^{\circ}} + 360 \ensurement{^{\circ}} = 330 \ensurement{^{\circ}}$$

$$x_2 = 180 \ensurement{^{\circ}} - (-30 \ensurement{^{\circ}} ) = 210 \ensurement{^{\circ}}$$

heureka  Sep 19, 2014

9 Online Users

avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details