1)
3x^2 + 81=0
\(\begin{array}{|rcll|} \hline 3x^2 + 81 &=& 0 \quad | \quad : 3 \\ x^2 + 27 &=& 0 \quad | \quad -27 \\ x^2 &=& -27 \\ x^2 &=& (-1)\cdot 9 \cdot 3 \\ x &=& \pm\sqrt{(-1)\cdot 9 \cdot 3} \\ x &=&\pm\sqrt{9}\sqrt{3}\sqrt{-1} \quad &| \quad \sqrt{-1} = i \\ x &=&\pm 3\sqrt{3}\cdot i \\ \hline \end{array}\)
2)
6x^2 = -126
\(\begin{array}{|rcll|} \hline 6x^2 &=& -126 \quad | \quad : 6 \\ x^2 &=& -21 \\ x^2 &=& (-1)\cdot 21 \\ x &=& \pm\sqrt{(-1)\cdot 21} \\ x &=&\pm \sqrt{21}\sqrt{-1} \quad &| \quad \sqrt{-1} = i \\ x &=&\pm \sqrt{21}\cdot i \\ \hline \end{array}\)
3)
(1/4)x^2 + 12=0
\(\begin{array}{|rcll|} \hline (1/4)x^2 + 12 &=& 0 \quad | \quad \cdot 4 \\ x^2 + 48 &=& 0 \quad | \quad -48 \\ x^2 &=& -48 \\ x^2 &=& (-1)\cdot 16 \cdot 3 \\ x &=& \pm \sqrt{(-1)\cdot 16 \cdot 3} \\ x &=&\pm\sqrt{16}\sqrt{3}\sqrt{-1} \quad &| \quad \sqrt{-1} = i \\ x &=&\pm 4\sqrt{3}\cdot i \\ \hline \end{array}\)