+0  
 
0
2524
1
avatar

Solve the equation 2 cos x - sec x = 1 on the interval [0, 2π). how would i do this

Guest Mar 25, 2015

Best Answer 

 #1
avatar+85598 
+5

2 cos x - sec x = 1   .....note sec x = 1/cosx  so we have

2cosx - 1/cosx  = 1      multiply through by cos x

2cos^2 x  - 1  =  cos x    rearrange

2cos^2 x - cos x - 1  = 0     factor

(2 cos x + 1)(cos x - 1) = 0      so either

2 cos x + 1   = 0

2 cos x = -1

cos x = -1//2     and this occurs at  2pi/3 and 4pi/3

OR

cosx - 1  = 0   

cos x =  1    and this occurs at  0

So the solutions on the given interval are  0, 2pi/3 and 4pi/3

 

  

CPhill  Mar 25, 2015
Sort: 

1+0 Answers

 #1
avatar+85598 
+5
Best Answer

2 cos x - sec x = 1   .....note sec x = 1/cosx  so we have

2cosx - 1/cosx  = 1      multiply through by cos x

2cos^2 x  - 1  =  cos x    rearrange

2cos^2 x - cos x - 1  = 0     factor

(2 cos x + 1)(cos x - 1) = 0      so either

2 cos x + 1   = 0

2 cos x = -1

cos x = -1//2     and this occurs at  2pi/3 and 4pi/3

OR

cosx - 1  = 0   

cos x =  1    and this occurs at  0

So the solutions on the given interval are  0, 2pi/3 and 4pi/3

 

  

CPhill  Mar 25, 2015

6 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details