+0  
 
0
353
2
avatar

solve the equation and find the roots x^(-4/3)-x^(-2/3)-8=0

Guest Dec 10, 2014

Best Answer 

 #1
avatar+88830 
+10

x^(-4/3)-x^(-2/3)-8=0   let u = x^(-2/3)   then we have

u^2 - u -  8  = 0          add 8 to both sides

u^2 - u    =  8             complete the square on both sides

u^2 -  u  + 1/4  = 8.25        factor

(u - 1/2)^2  = 8.25              take both roots

u - 1/2 = ±√8.25                   add 1/2 to both sides

u = ±√8.25 + 1/2

So u = √8.25 + 1/2   or  u = -√8.25 + 1/2

Then, back-substituting, we have

x^(-2/3) = √8.25 + 1/2    raise both sides to the (-3) power

x*2 = (√8.25 + 1/2)^(-3) 

Take both roots

x = ±√((√8.25 + 1/2)^(-3))  = ±(√8.25 + 1/2)^(-3/2) = about ± .161

The other solution, u = -√8.25 + 1/2   leads to a non-real answer

Here's a graph.........https://www.desmos.com/calculator/kkomxbtlbj

 

CPhill  Dec 10, 2014
 #1
avatar+88830 
+10
Best Answer

x^(-4/3)-x^(-2/3)-8=0   let u = x^(-2/3)   then we have

u^2 - u -  8  = 0          add 8 to both sides

u^2 - u    =  8             complete the square on both sides

u^2 -  u  + 1/4  = 8.25        factor

(u - 1/2)^2  = 8.25              take both roots

u - 1/2 = ±√8.25                   add 1/2 to both sides

u = ±√8.25 + 1/2

So u = √8.25 + 1/2   or  u = -√8.25 + 1/2

Then, back-substituting, we have

x^(-2/3) = √8.25 + 1/2    raise both sides to the (-3) power

x*2 = (√8.25 + 1/2)^(-3) 

Take both roots

x = ±√((√8.25 + 1/2)^(-3))  = ±(√8.25 + 1/2)^(-3/2) = about ± .161

The other solution, u = -√8.25 + 1/2   leads to a non-real answer

Here's a graph.........https://www.desmos.com/calculator/kkomxbtlbj

 

CPhill  Dec 10, 2014
 #2
avatar+93299 
+5

That looks like a lot of work Chris - The equation looks interesting :)

Melody  Dec 10, 2014

33 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.