Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
619
1
avatar

solve the exponential function 2^(2x+13)=3^(x-33) in terms of logs or round to the closest 4 decimal places

 Feb 6, 2015

Best Answer 

 #1
avatar+23254 
+5

22x + 13  =  3x - 33

Take the log of both sides:

log(22x + 13) =  log(3x - 33)

Since exponents come out as multipliers:

(2x + 13)log(2)  =  (x - 33)log(3)

Use the distributive property:

2xlog(2) + 13log(2)  =  xlog(3) - 33log(3)

Rearrange:

2xlog(2) - xlog(3)  =  -13log(2) - 33log(3)

Factor out the x:

x( 2log(2) - log(3) ) =  -13log(2) - 33log(3)

Divide:

x  =  [ -13log(2) - 33log(3) ] / [ 2log(2) - log(3) ]

 Feb 6, 2015
 #1
avatar+23254 
+5
Best Answer

22x + 13  =  3x - 33

Take the log of both sides:

log(22x + 13) =  log(3x - 33)

Since exponents come out as multipliers:

(2x + 13)log(2)  =  (x - 33)log(3)

Use the distributive property:

2xlog(2) + 13log(2)  =  xlog(3) - 33log(3)

Rearrange:

2xlog(2) - xlog(3)  =  -13log(2) - 33log(3)

Factor out the x:

x( 2log(2) - log(3) ) =  -13log(2) - 33log(3)

Divide:

x  =  [ -13log(2) - 33log(3) ] / [ 2log(2) - log(3) ]

geno3141 Feb 6, 2015

0 Online Users