1/[csc A - cotA] - 1/sinA = 1/sinA - 1/[csc A + cot A] get everything in terms of sine and cosine
1/ [(1/sinA - cosA/sinA)] - 1/sinA = 1/sinA - 1/ [(1/sinA + cosA/sinA)] simplify this
sinA/[1 - cosA] - 1/sinA = 1/sinA - sinA/[1 + cosA]
Multiply the first term on the LHS by (1 + cos A) in the the numerator and the denominator. The denominator becomes (1-cos^A) = sin^2A.......the same sort of thing is also done to the last term on the RHS....
sinA[1 + cosA]/sin^2A - 1/sinA = 1/sinA - sinA[1-cosA]/sin^2A
Get common denominators - (sin^2A) - on both sides
sinA[1+cosA]/sin^2A -sinA/sin^2A = sinA/sin^2A - sinA[1 - cosA]/sin^2a
sinA/sin^2a + cosA/sin^A - sinA/sin^2A = sinA/sin^2A - sinA/sin^2A + cosA/sin^2A
cosA/sin^2A = cosA/sin^2A
Sorry Chris, I can't resist.
Your will be amused to know that I got in a mess and it took forever. lol
1(cosecA−cotA)−1sinA=1sinA−1(cosecA+cotA)
LHS=sinAsinA(cosecA−cotA)−(cosecA−cotA)sinA(cosecA−cotA)=sinA−(cosecA−cotA)sinA(cosecA−cotA)=sinA−cosecA+cotAsinA(1sinA−cosAsinA)=sinA−cosecA+cotA1−cosA=(sinA−cosecA+cotA)sinA(1−cosA)sinA=sin2A−1+cosA(1−cosA)sinA=1−cos2A−1+cosA(1−cosA)sinA=cosA(1−cosA)(1−cosA)sinA=cosAsinA=CotARHS=(cosecA+cotA)sinA(cosecA+cotA)−sinAsinA(cosecA+cotA)=cosecA+cotA−sinA1+cosA=(1+cosA−sin2A)(1+cosA)sinA=(1+cosA−(1−cos2A)(1+cosA)sinA=cosA(1+cosA)(1+cosA)sinA=cosAsinA=cotA=LHSQED