+0  
 
0
1198
4
avatar

a.) list the number of complex roots 

b.)list the possible number of real roots

c.) list the possible rational roots

d.) find and verify all roots.

 Feb 1, 2016

Best Answer 

 #4
avatar+129850 
+5

x^3 - 6x^2 + 7x + 2

 

1. Possible no. of complex roots......either none or two, at most

 

2. Possible number of real roots.....either one or three, at most

 

3. Possible rational roots  =  +/- 1 , +/- 2

 

4.   2 is a root  because  (2)^3 - 6(2)^2 + 7(2) + 2   =  8 - 24 + 14 + 2 =  0

 

 

The other two roots are either non-real or non-rational and can be found by synthetic division

 

 

2   [ 1     - 6      7      2 ]

                2     -8     -2

      -------------------------

       1     -4      -1      0

 

So the remaining polynomial is   x^2 - 4x -1

 

And the remaining roots are  2 + sqrt(5)  and 2 - sqrt(5)

 

 

 

cool cool cool

 Feb 1, 2016
 #1
avatar+8581 
0

Sounds like a problem I have.. What grade are you in....??

 Feb 1, 2016
 #2
avatar+8581 
+10

I know about more than half of this, the rest... I had to look up. :/

Don't give me much credit!! LOL

 

 

 

 

Cubics and up are very difficult to calculate roots, unless they are easily factorable 

so ideally we can factor this into something like (x+a)(x+b)(x+c) = 0, then finding the roots will be very easy 

Unfortunately we cannot reduce it this way.as our only choices for (a,b,c) will be (1,-1,2), (1,1,-2) or (-1,-1,-2) and none of these will satisfy the equation. 

So our only other option is to reduce this to a quadratic aka 

(x+a)(x^2+bx+c) and solve for a,b,c 

This expands to 

x^3+(a+b)x^2 + (c + ab)x +ac 

so for this problem we will require that (a+b)= -6, as it is the coefficient for x^2, (c+ab) = 7 and ac = -2. 

Starting with ac = -2 we have the following integer potential solutions: 

(-1,2) 
(1,-2) 

Let's now try each one starting with (-1,2). 

With these values of (a,c) we can solve for b: 
(c+ab) = 7 
thus 
2 -b = 7 
b = -5 

Now we check to see if (a,b,c) = (-1,-5,2) works 

(a+b) = -6 thus -1 -5 = -6 which works 

so therefore we can reduce our cubic to 

(x-1)(x^2 -5x +2) =0 

This will be true when (x-1) =0 ie x =1 is a solution 

or x^2 -5x +2 =0 

we must use quadratic theorem to solve this quadratic: 


x = (-b+/-sqrt(b^ - 4ac))/2a 

ie x = (5+/- sqrt(25-8))/2 
sooooo..
x = (5+ sqrt(17))/2
and 
x = (5 - sqrt(17))/2 

so those are the roots (zeros) of the cubic

 Feb 1, 2016
edited by Hayley1  Feb 1, 2016
edited by Hayley1  Feb 1, 2016
 #3
avatar+8581 
0

Mr. Chris's explanation will be muchhh better than mine!

 Feb 1, 2016
 #4
avatar+129850 
+5
Best Answer

x^3 - 6x^2 + 7x + 2

 

1. Possible no. of complex roots......either none or two, at most

 

2. Possible number of real roots.....either one or three, at most

 

3. Possible rational roots  =  +/- 1 , +/- 2

 

4.   2 is a root  because  (2)^3 - 6(2)^2 + 7(2) + 2   =  8 - 24 + 14 + 2 =  0

 

 

The other two roots are either non-real or non-rational and can be found by synthetic division

 

 

2   [ 1     - 6      7      2 ]

                2     -8     -2

      -------------------------

       1     -4      -1      0

 

So the remaining polynomial is   x^2 - 4x -1

 

And the remaining roots are  2 + sqrt(5)  and 2 - sqrt(5)

 

 

 

cool cool cool

CPhill Feb 1, 2016

0 Online Users