+0

# solve

0
284
1

b1+b2=-5 5b1+2b2=-12 b1=,b2=

Guest May 6, 2017

#1
+7324
+5

I think these are the equations:

b1 + b2 = -5

5b1 + 2b2 = -12

Solve the first equation for b1 by subtracting b2 from both sides.

b1 = -5 - b2

Substitute this value for b1 into the second equation.

5(-5 - b2) + 2b2 = -12

Distribute and combine like terms.

-25 - 5b2 + 2b2 = -12

-25 - 3b2 = -12

Add 25 to both sides of the equation.

-3b2 = -12 + 25

-3b2 = 13

Divide both sides by 7.

b2 = -13/3

Substitute this value for b2 into either of the given equations to find b1.

b1 + -13/3 = -5

b1 = -5 + 13/3

b1 = -2/3

hectictar  May 7, 2017
#1
+7324
+5

I think these are the equations:

b1 + b2 = -5

5b1 + 2b2 = -12

Solve the first equation for b1 by subtracting b2 from both sides.

b1 = -5 - b2

Substitute this value for b1 into the second equation.

5(-5 - b2) + 2b2 = -12

Distribute and combine like terms.

-25 - 5b2 + 2b2 = -12

-25 - 3b2 = -12

Add 25 to both sides of the equation.

-3b2 = -12 + 25

-3b2 = 13

Divide both sides by 7.

b2 = -13/3

Substitute this value for b2 into either of the given equations to find b1.

b1 + -13/3 = -5

b1 = -5 + 13/3

b1 = -2/3

hectictar  May 7, 2017