Using the quadratic formula, we get: \({-b \pm \sqrt{b^2-4ac} \over 2a}\Leftrightarrow\frac{-\left(-6\right)\pm\sqrt{\left(-6\right)^24\cdot \:1\cdot \:5}}{2\cdot \:1}\Leftrightarrow\frac{6\pm\sqrt{\left(-6\right)^2-4\cdot \:1\cdot \:5}}{2\cdot \:1} \Leftrightarrow\frac{6\pm\sqrt{16}}{2\cdot \:1}\Leftrightarrow\frac{6\pm4}{2}=\boxed{5}, \boxed{1}.\)
...or factoring (which you will eventually be able to do 'in your head')
(b-5)(b-1) = 0 so b-5 = 0 means b = 5 or b-1 = 0 means b = 1