Find real numbers x and y such that x + y = 6 and x^3 + y^3 = 60.
Hello Guest!
\(x+y=6\\ y=6-x\\ x^3+y^3=60\\ x^3+(6-x)^3=60\\ x^3+(36-12x+x^2)(6-x)=60\)
\(x^3+216-36x-72x+12x^2+6x^2-x^3=60\\ 18x^2-108x+216=60\)
\(18x^2-108x+156=0\)
\(x = {-108 \pm \sqrt{11664-4\cdot 18\cdot 156} \over 2\cdot 18}\\ x=\frac{-108\pm 20.785}{36}\)
\(x_1=-2.423\\ x_2=-3.577\) \(y_1=8.423\\ y_2=9.577\)
!
x + y = 6.......................(1)
x^3 + y^3 =60.............(2)
y =6 - x
Solve for x:
(6 - x)^3 + x^3 = 60
Expand out terms of the left hand side:
18 x^2 - 108 x + 216 = 60
Divide both sides by 18:
x^2 - 6 x + 12 = 10/3
Subtract 12 from both sides:
x^2 - 6 x = -26/3
Add 9 to both sides:
x^2 - 6 x + 9 = 1/3
Write the left hand side as a square:
(x - 3)^2 = 1/3
Take the square root of both sides:
x - 3 = 1/sqrt(3) or x - 3 = -1/sqrt(3)
Add 3 to both sides:
x = 3 + 1/sqrt(3) or x - 3 = -1/sqrt(3)
Add 3 to both sides
x = 3 + 1/sqrt(3) and y = 3 - 1/sqrt(3) OR y = 3 + 1/sqrt(3) and x = 3 - 1/sqrt(3)