We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.

Pat wants to select 8 pieces of fruit to bring in the car for the people he's driving to Montana with. He randomly chooses each piece of fruit to be an orange, an apple, or a banana. What is the probability that either exactly 3 of the pieces of fruit are oranges or exactly 6 of the pieces of fruit are apples?


Thank you!

 Feb 2, 2019

\(\text{the two events are distinct so the probability of their union is the sum of their individual probabilities}\)


\(\text{First we compute how many total fruit arrangements there are}\\ \text{This is equivalent to the stars and bars problem of sorting 8 fruits into 3 bins}\\ \text{Thus there are }\\ n=\dbinom{8+3-1}{3-1} = \dbinom{10}{2} = 45\)


\(\text{Next we compute how many arrangements have exactly 3 oranges}\\ \text{Choosing 3 oranges we have 5 fruits left to choose among two choices}\\ \text{This is again the stars and bars problem now putting 5 fruits into 2 bins}\\ n_{3o} = \dbinom{5+2-1}{2-1} = \dbinom{6}{1}=6\\ P[3o] = \dfrac{6}{45} = \dfrac{2}{15}\)


\(\text{more quickly this time}\\ P[6a] = \dfrac{\dbinom{2+2-1}{2-1}}{45} = \dfrac{1}{15}\)


\(P[3o \cup 6a] = P[3o]+P[6a] = \dfrac{2}{15}+\dfrac{1}{15} = \dfrac{1}{5}\)

 Feb 2, 2019

17 Online Users