+0  
 
-1
390
2
avatar

1. Compute $i+i^2+i^3+\cdots+i^{2016}+i^{2017}$.

 

 

2. Find a complex number $z$ such that the real part and imaginary part of $z$ are both integers, and such that$$z\overline z = 89.$$

 

 

3. Simplify $(1+i)^{2016}-(1-i)^{2016}$.

 

 

4. Express $\frac 1{1+\frac 1{1-\frac 1{1+i}}}$ in the form $a+bi$, where $a$ and $b$ are real numbers.

 Sep 8, 2021
 #1
avatar
0

1. $i + i^2 + i^3 + \dots + i^{2016} + i^{2017} = -1$.

 

2. $z = 6 + 7i$ works.

 Sep 9, 2021
 #2
avatar+118667 
0

One post = one question

 

This question has been closed.

 Sep 9, 2021

4 Online Users

avatar